Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizability in Document Layout Analysis for Scientific Article Figure & Caption Extraction (2301.10781v1)

Published 25 Jan 2023 in cs.DL

Abstract: The lack of generalizability -- in which a model trained on one dataset cannot provide accurate results for a different dataset -- is a known problem in the field of document layout analysis. Thus, when a model is used to locate important page objects in scientific literature such as figures, tables, captions, and math formulas, the model often cannot be applied successfully to new domains. While several solutions have been proposed, including newer and updated deep learning models, larger hand-annotated datasets, and the generation of large synthetic datasets, so far there is no "magic bullet" for translating a model trained on a particular domain or historical time period to a new field. Here we present our ongoing work in translating our document layout analysis model from the historical astrophysical literature to the larger corpus of scientific documents within the HathiTrust U.S. Federal Documents collection. We use this example as an avenue to highlight some of the problems with generalizability in the document layout analysis community and discuss several challenges and possible solutions to address these issues. All code for this work is available on The Reading Time Machine GitHub repository (https://github.com/ReadingTimeMachine/htrc_short_conf).

Citations (1)

Summary

We haven't generated a summary for this paper yet.