Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large Dataset of Historical Japanese Documents with Complex Layouts (2004.08686v1)

Published 18 Apr 2020 in cs.CV

Abstract: Deep learning-based approaches for automatic document layout analysis and content extraction have the potential to unlock rich information trapped in historical documents on a large scale. One major hurdle is the lack of large datasets for training robust models. In particular, little training data exist for Asian languages. To this end, we present HJDataset, a Large Dataset of Historical Japanese Documents with Complex Layouts. It contains over 250,000 layout element annotations of seven types. In addition to bounding boxes and masks of the content regions, it also includes the hierarchical structures and reading orders for layout elements. The dataset is constructed using a combination of human and machine efforts. A semi-rule based method is developed to extract the layout elements, and the results are checked by human inspectors. The resulting large-scale dataset is used to provide baseline performance analyses for text region detection using state-of-the-art deep learning models. And we demonstrate the usefulness of the dataset on real-world document digitization tasks. The dataset is available at https://dell-research-harvard.github.io/HJDataset/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zejiang Shen (15 papers)
  2. Kaixuan Zhang (34 papers)
  3. Melissa Dell (17 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com