Papers
Topics
Authors
Recent
2000 character limit reached

A kernel formula for regularized Wasserstein proximal operators

Published 24 Jan 2023 in math.OC, cs.NA, and math.NA | (2301.10301v1)

Abstract: We study a class of regularized proximal operators in Wasserstein-2 space. We derive their solutions by kernel integration formulas. We obtain the Wasserstein proximal operator using a pair of forward-backward partial differential equations consisting of a continuity equation and a Hamilton-Jacobi equation with a terminal time potential function and an initial time density function. We regularize the PDE pair by adding forward and backward Laplacian operators. We apply Hopf-Cole type transformations to rewrite these regularized PDE pairs into forward-backward heat equations. We then use the fundamental solution of the heat equation to represent the regularized Wasserstein proximal with kernel integral formulas. Numerical examples show the effectiveness of kernel formulas in approximating the Wasserstein proximal operator.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.