Gossiped and Quantized Online Multi-Kernel Learning (2301.09848v2)
Abstract: In instances of online kernel learning where little prior information is available and centralized learning is unfeasible, past research has shown that distributed and online multi-kernel learning provides sub-linear regret as long as every pair of nodes in the network can communicate (i.e., the communications network is a complete graph). In addition, to manage the communication load, which is often a performance bottleneck, communications between nodes can be quantized. This letter expands on these results to non-fully connected graphs, which is often the case in wireless sensor networks. To address this challenge, we propose a gossip algorithm and provide a proof that it achieves sub-linear regret. Experiments with real datasets confirm our findings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.