Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Triplet Contrastive Representation Learning for Unsupervised Vehicle Re-identification (2301.09498v2)

Published 23 Jan 2023 in cs.CV

Abstract: Part feature learning is critical for fine-grained semantic understanding in vehicle re-identification. However, existing approaches directly model part features and global features, which can easily lead to serious gradient vanishing issues due to their unequal feature information and unreliable pseudo-labels for unsupervised vehicle re-identification. To address this problem, in this paper, we propose a simple Triplet Contrastive Representation Learning (TCRL) framework which leverages cluster features to bridge the part features and global features for unsupervised vehicle re-identification. Specifically, TCRL devises three memory banks to store the instance/cluster features and proposes a Proxy Contrastive Loss (PCL) to make contrastive learning between adjacent memory banks, thus presenting the associations between the part and global features as a transition of the part-cluster and cluster-global associations. Since the cluster memory bank copes with all the vehicle features, it can summarize them into a discriminative feature representation. To deeply exploit the instance/cluster information, TCRL proposes two additional loss functions. For the instance-level feature, a Hybrid Contrastive Loss (HCL) re-defines the sample correlations by approaching the positive instance features and pushing the all negative instance features away. For the cluster-level feature, a Weighted Regularization Cluster Contrastive Loss (WRCCL) refines the pseudo labels by penalizing the mislabeled images according to the instance similarity. Extensive experiments show that TCRL outperforms many state-of-the-art unsupervised vehicle re-identification approaches.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.