Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Model Based Reinforcement Learning with Non-Gaussian Environment Dynamics and its Application to Portfolio Optimization (2301.09297v3)

Published 23 Jan 2023 in q-fin.MF

Abstract: With the fast development of quantitative portfolio optimization in financial engineering, lots of AI-based algorithmic trading strategies have demonstrated promising results, among which reinforcement learning begins to manifest competitive advantages. However, the environment from real financial markets is complex and hard to be fully simulated, considering the observation of abrupt transitions, unpredictable hidden causal factors, heavy tail properties and so on. Thus, in this paper, first, we adopt a heavy-tailed preserving normalizing flows to simulate high-dimensional joint probability of the complex trading environment and develop a model-based reinforcement learning framework to better understand the intrinsic mechanisms of quantitative online trading. Second, we experiment with various stocks from three different financial markets (Dow, NASDAQ and S&P) and show that among these three financial markets, Dow gets the best performance based on various evaluation metrics under our back-testing system. Especially, our proposed method is able to mitigate the impact of unpredictable financial market crises during the COVID-19 pandemic period, resulting in a lower maximum drawdown. Third, we also explore the explanation of our RL algorithm. (1), we utilize the pattern causality method to study the interactive relation among different stocks in the environment. (2), We analyze the dynamic loss and actor loss to ensure the convergence of our strategies. (3), by visualizing high dimensional state transition data comparisons from real and virtual buffers with t-SNE, we uncover some effective patterns of better portfolio optimization strategies. (4), we also utilize eigenvalue analysis to study the convergence properties of the environmen's model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube