2000 character limit reached
Harnack's inequality for degenerate double phase parabolic equations under the non-logarithmic Zhikov's condition (2301.08501v2)
Published 20 Jan 2023 in math.AP
Abstract: We prove Harnack's type inequalities for bounded non-negative solutions of degenerate parabolic equations with $(p,q)$ growth $$ u_{t}-{\rm div}\left(\mid \nabla u \mid{p-2}\nabla u + a(x,t) \mid \nabla u \mid{q-2}\nabla u \right)=0,\quad a(x,t) \geq 0 , $$ under the generalized non-logarithmic Zhikovs conditions $$ \mid a(x,t)-a(y,\tau)\mid \leqslant A\mu(r) r{q-p},\quad (x,t),(y,\tau)\in Q_{r,r}(x_{0},t_{0}),$$ $$\lim\limits_{r\rightarrow 0}\mu(r) r{q-p}=0,\quad \lim\limits_{r\rightarrow 0}\mu(r)=+\infty,\quad \int\limits_{0} \mu{-\beta}(r)\frac{dr}{r} =+\infty,$$ with some $\beta >0$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.