2000 character limit reached
Higher Genus Gromov-Witten Theory of C^n/Z_n I: Holomorphic Anomaly Equations (2301.08389v3)
Published 20 Jan 2023 in math.AG, math-ph, and math.MP
Abstract: We study the structure of higher genus Gromov-Witten theory of the quotient stack $[\mathbb{C}n/\mathbb{Z}_n]$. We prove holomorphic anomaly equations for $[\mathbb{C}n/\mathbb{Z}_n]$, generalizing previous results of Lho-Pandharipande arXiv:1804.03168 for the case of $[\mathbb{C}3/\mathbb{Z}_3]$ and ours arXiv:2211.15878 for the case $[\mathbb{C}5/\mathbb{Z}_5]$ to arbitrary $n\geq{3}$.
- A. Givental, Elliptic Gromov-Witten invariants and the generalized mirror conjecture, in: “Integrable systems and algebraic geometry (Kobe/Kyoto, 1997)”, 107–155, World Sci. Publ., River Edge, NJ, 1998.
- A. Givental, Symplectic geometry of Frobenius structures, in: “Frobenius manifolds”, Aspects Math., E36, 91–112, Friedr. Vieweg, Wiesbaden, 2004.
- D. Zagier, A. Zinger, Some properties of hypergeometric series associated with mirror symmetry, In: “Modular forms and string duality”, 163–177, Fields Inst. Commun. 54, AMS 2008.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.