Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

General rigidity principles for stable and minimal elastic curves (2301.08384v3)

Published 20 Jan 2023 in math.DG and math.AP

Abstract: For a wide class of curvature energy functionals defined for planar curves under the fixed-length constraint, we obtain optimal necessary conditions for global and local minimizers. Our results extend Maddocks' and Sachkov's rigidity principles for Euler's elastica by a new, unified and geometric approach. This in particular leads to complete classification of stable closed $p$-elasticae for all $p\in(1,\infty)$ and of stable pinned $p$-elasticae for $p\in(1,2]$. Our proof is based on a simple but robust `cut-and-paste' trick without computing the energy nor its second variation, which works well for planar periodic curves but also extends to some non-periodic or non-planar cases. An analytically remarkable point is that our method is directly valid for the highly singular regime $p\in(1,\frac{3}{2}]$ in which the second variation may not exist even for smooth variations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Closed generalized elastic curves in S2⁢(1)superscript𝑆21S^{2}(1)italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 ). J. Geom. Phys., 48(2-3):339–353, 2003.
  2. B. Audoly and Y. Pomeau. Elasticity and geometry: From Hair Curls to the Non-Linear Response of Shells. Oxford University Press, Oxford, 2010.
  3. Euler elasticae in the plane and the Whitney-Graustein theorem. Russ. J. Math. Phys., 20(3):257–267, 2013.
  4. A regularized gradient flow for the p𝑝pitalic_p-elastic energy. Adv. Nonlinear Anal., 11(1):1383–1411, 2022.
  5. A minimising movement scheme for the p𝑝pitalic_p-elastic energy of curves. J. Evol. Equ., 22(2):Paper No. 41, 25, 2022.
  6. M. Born. Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen. PhD thesis, University of Göttingen, 1906.
  7. An obstacle problem for the p𝑝pitalic_p-elastic energy, arXiv:2202.09893.
  8. Cyclization of short DNA fragments and bending fluctuations of the double helix. Proc. Natl. Acad. Sci. U.S.A, 102:5397–5402, 2005.
  9. L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Marcum-Michaelem Bousquet & socios, Lausanne, Geneva, 1744.
  10. Generalized elastica problems under area constraint. Math. Res. Lett., 25(2):521–533, 2018.
  11. O. J. Garay. Extremals of the generalized Euler-Bernoulli energy and applications. J. Geom. Symmetry Phys., 12:27–61, 2008.
  12. Instability of closed p𝑝pitalic_p-elastic curves in 𝕊2superscript𝕊2\mathbb{S}^{2}blackboard_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Anal. Appl. (Singap.), 21(6):1533–1559, 2023.
  13. R. Huang. A note on the p𝑝pitalic_p-elastica in a constant sectional curvature manifold. J. Geom. Phys., 49(3-4):343–349, 2004.
  14. Theory of elasticity, volume 7 of Course of theoretical physics. Butterworth-Heinemann, 3rd English edition, 1995.
  15. J. Langer and D. A. Singer. Curve straightening and a minimax argument for closed elastic curves. Topology, 24(1):75–88, 1985.
  16. R. Levien. The elastica: a mathematical history. Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, 2008.
  17. R. López and A. Pámpano. Classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures. Math. Nachr., 293(4):735–753, 2020.
  18. R. López and A. Pámpano. Stationary soap films with vertical potentials. Nonlinear Anal., 215:Paper No. 112661, 22, 2022.
  19. A. E. H. Love. A treatise on the Mathematical Theory of Elasticity. Dover Publications, New York, 1944. Fourth Ed.
  20. J. H. Maddocks. Analysis of nonlinear differential equations governing the equilibria of an elastic rod and their stability. PhD thesis, University of Oxford, 1981.
  21. J. H. Maddocks. Stability of nonlinearly elastic rods. Arch. Rational Mech. Anal., 85(4):311–354, 1984.
  22. A survey of the elastic flow of curves and networks. Milan J. Math., 89(1):59–121, 2021.
  23. T. Miura. Elastic curves and phase transitions. Math. Ann., 376(3-4):1629–1674, 2020.
  24. T. Miura. Classification theory of planar p𝑝pitalic_p-elasticae. RIMS kôkyûroku, 2239:60–70, 2023.
  25. Optimal thresholds for preserving embeddedness of elastic flows. to appear in Amer. J. Math., arXiv:2106.09549.
  26. T. Miura and K. Yoshizawa. Complete classification of planar p𝑝pitalic_p-elasticae. to appear in Ann. Mat. Pura Appl. (4), arXiv:2203.08535.
  27. T. Miura and K. Yoshizawa. Pinned planar p𝑝pitalic_p-elasticae. to appear in Indiana Univ. Math. J., arXiv:2209.05721.
  28. M. Novaga and P. Pozzi. A second order gradient flow of p𝑝pitalic_p-elastic planar networks. SIAM J. Math. Anal., 52(1):682–708, 2020.
  29. A gradient flow for the p𝑝pitalic_p-elastic energy defined on closed planar curves. Math. Ann., 378(1-2):777–828, 2020.
  30. S. Okabe and G. Wheeler. The p𝑝pitalic_p-elastic flow for planar closed curves with constant parametrization. J. Math. Pures Appl. (9), 173:1–42, 2023.
  31. M. Pozzetta. A varifold perspective on the p𝑝pitalic_p-elastic energy of planar sets. J. Convex Anal., 27(3):845–879, 2020.
  32. M. Pozzetta. Convergence of elastic flows of curves into manifolds. Nonlinear Anal., 214:Paper No. 112581, 53, 2022.
  33. Y. L. Sachkov. Conjugate points in the Euler elastic problem. J. Dyn. Control Syst., 14(3):409–439, 2008.
  34. Y. L. Sachkov. Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst., 14(2):169–234, 2008.
  35. Y. L. Sachkov. Closed Euler elasticae. Proc. Steklov Inst. Math., 278(1):218–232, 2012.
  36. Stability of inflectional elasticae centered at vertices or inflection points. Tr. Mat. Inst. Steklova, 271:187–203, 2010.
  37. Exponential mapping in Euler’s elastic problem. J. Dyn. Control Syst., 20(4):443–464, 2014.
  38. N. Shioji and K. Watanabe. Total p𝑝pitalic_p-powered curvature of closed curves and flat-core closed p𝑝pitalic_p-curves in 𝐒2⁢(G)superscript𝐒2𝐺{\bf S}^{2}(G)bold_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_G ). Comm. Anal. Geom., 28(6):1451–1487, 2020.
  39. D. A. Singer. Lectures on elastic curves and rods. In Curvature and variational modeling in physics and biophysics, volume 1002 of AIP Conf. Proc., pages 3–32. Amer. Inst. Phys., Melville, NY, 2008.
  40. C. Truesdell. The influence of elasticity on analysis: the classic heritage. Bull. Amer. Math. Soc. (N.S.), 9(3):293–310, 1983.
  41. K. Watanabe. Planar p𝑝pitalic_p-elastic curves and related generalized complete elliptic integrals. Kodai Math. J., 37(2):453–474, 2014.
  42. K. Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete Contin. Dyn. Syst., 42(1):403–423, 2022.
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube