Papers
Topics
Authors
Recent
2000 character limit reached

Parametrization Cookbook: A set of Bijective Parametrizations for using Machine Learning methods in Statistical Inference (2301.08297v1)

Published 19 Jan 2023 in stat.CO and stat.ML

Abstract: We present in this paper a way to transform a constrained statistical inference problem into an unconstrained one in order to be able to use modern computational methods, such as those based on automatic differentiation, GPU computing, stochastic gradients with mini-batch. Unlike the parametrizations classically used in Machine Learning, the parametrizations introduced here are all bijective and are even diffeomorphisms, thus allowing to keep the important properties from a statistical inference point of view, first of all identifiability. This cookbook presents a set of recipes to use to transform a constrained problem into a unconstrained one. For an easy use of parametrizations, this paper is at the same time a cookbook, and a Python package allowing the use of parametrizations with numpy, but also JAX and PyTorch, as well as a high level and expressive interface allowing to easily describe a parametrization to transform a difficult problem of statistical inference into an easier problem addressable with modern optimization tools.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.