2000 character limit reached
Phase transitions of wave packet dynamics in disordered non-Hermitian systems
Published 18 Jan 2023 in cond-mat.mes-hall and cond-mat.dis-nn | (2301.07370v2)
Abstract: Disorder can localize the eigenstates of one-dimensional non-Hermitian systems, leading to an Anderson transition with a critical exponent of 1. We show that, due to the lack of energy conservation, the dynamics of individual, real-space wave packets follows a different behavior. Both transitions between localization and unidirectional amplification, as well as transitions between distinct propagating phases become possible. The critical exponent of the transition equals $1/2$ in propagating-propagating transitions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.