Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAFUS: a Framework to predict mortality risk in MAFLD subjects (2301.06908v1)

Published 17 Jan 2023 in stat.ML and cs.LG

Abstract: Metabolic (dysfunction) associated fatty liver disease (MAFLD) establishes new criteria for diagnosing fatty liver disease independent of alcohol consumption and concurrent viral hepatitis infection. However, the long-term outcome of MAFLD subjects is sparse. Few articles are focused on mortality in MAFLD subjects, and none investigate how to predict a fatal outcome. In this paper, we propose an artificial intelligence-based framework named MAFUS that physicians can use for predicting mortality in MAFLD subjects. The framework uses data from various anthropometric and biochemical sources based on Machine Learning (ML) algorithms. The framework has been tested on a state-of-the-art dataset on which five ML algorithms are trained. Support Vector Machines resulted in being the best model. Furthermore, an Explainable Artificial Intelligence (XAI) analysis has been performed to understand the SVM diagnostic reasoning and the contribution of each feature to the prediction. The MAFUS framework is easy to apply, and the required parameters are readily available in the dataset.

Summary

We haven't generated a summary for this paper yet.