Papers
Topics
Authors
Recent
2000 character limit reached

NeuroSVM: A Graphical User Interface for Identification of Liver Patients

Published 19 Feb 2015 in cs.LG and cs.HC | (1502.05534v1)

Abstract: Diagnosis of liver infection at preliminary stage is important for better treatment. In todays scenario devices like sensors are used for detection of infections. Accurate classification techniques are required for automatic identification of disease samples. In this context, this study utilizes data mining approaches for classification of liver patients from healthy individuals. Four algorithms (Naive Bayes, Bagging, Random forest and SVM) were implemented for classification using R platform. Further to improve the accuracy of classification a hybrid NeuroSVM model was developed using SVM and feed-forward artificial neural network (ANN). The hybrid model was tested for its performance using statistical parameters like root mean square error (RMSE) and mean absolute percentage error (MAPE). The model resulted in a prediction accuracy of 98.83%. The results suggested that development of hybrid model improved the accuracy of prediction. To serve the medicinal community for prediction of liver disease among patients, a graphical user interface (GUI) has been developed using R. The GUI is deployed as a package in local repository of R platform for users to perform prediction.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.