Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type ${\rm A}^{(1)}_{n-1}$, ${\rm C}^{(1)}_{n-1}$, ${\rm A}^{(2)}_{2n-2}$, ${\rm D}^{(2)}_{n}$ (2301.05800v2)

Published 14 Jan 2023 in math.QA, math.CO, and math.RT

Abstract: In this paper, we consider polyhedral realizations for crystal bases $B(\lambda)$ of irreducible integrable highest weight modules of a quantized enveloping algebra $U_q(\mathfrak{g})$, where $\mathfrak{g}$ is a classical affine Lie algebra of type ${\rm A}{(1)}_{n-1}$, ${\rm C}{(1)}_{n-1}$, ${\rm A}{(2)}_{2n-2}$ or ${\rm D}{(2)}_{n}$. We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of $\varepsilon_k*$ functions on $B(\infty)$ will be given.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.