Papers
Topics
Authors
Recent
Search
2000 character limit reached

Maximum Likelihood Estimation for Maximal Distribution under Sublinear Expectation

Published 13 Jan 2023 in math.PR, math.ST, and stat.TH | (2301.05354v1)

Abstract: Maximum likelihood estimation is a common method of estimating the parameters of the probability distribution from a given sample. This paper aims to introduce the maximum likelihood estimation in the framework of sublinear expectation. We find the maximum likelihood estimator for the parameters of the maximal distribution via the solution of the associated minimax problem, which coincides with the optimal unbiased estimation given by Jin and Peng \cite{JP21}. A general estimation method for samples with dependent structure is also provided. This result provides a theoretical foundation for the estimator of upper and lower variances, which is widely used in the G-VaR prediction model in finance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.