Papers
Topics
Authors
Recent
2000 character limit reached

Testing for the appropriate level of clustering in linear regression models

Published 11 Jan 2023 in econ.EM | (2301.04522v2)

Abstract: The overwhelming majority of empirical research that uses cluster-robust inference assumes that the clustering structure is known, even though there are often several possible ways in which a dataset could be clustered. We propose two tests for the correct level of clustering in regression models. One test focuses on inference about a single coefficient, and the other on inference about two or more coefficients. We provide both asymptotic and wild bootstrap implementations. The proposed tests work for a null hypothesis of either no clustering or fine'' clustering against alternatives ofcoarser'' clustering. We also propose a sequential testing procedure to determine the appropriate level of clustering. Simulations suggest that the bootstrap tests perform very well under the null hypothesis and can have excellent power. An empirical example suggests that using the tests leads to sensible inferences.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.