Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Temporal Weights (2301.04126v1)

Published 13 Dec 2022 in cs.NE, cs.AI, and cs.LG

Abstract: In artificial neural networks, weights are a static representation of synapses. However, synapses are not static, they have their own interacting dynamics over time. To instill weights with interacting dynamics, we use a model describing synchronization that is capable of capturing core mechanisms of a range of neural and general biological phenomena over time. An ideal fit for these Temporal Weights (TW) are Neural ODEs, with continuous dynamics and a dependency on time. The resulting recurrent neural networks efficiently model temporal dynamics by computing on the ordering of sequences, and the length and scale of time. By adding temporal weights to a model, we demonstrate better performance, smaller models, and data efficiency on sparse, irregularly sampled time series datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube