Papers
Topics
Authors
Recent
2000 character limit reached

Learning nonlinear hybrid automata from input--output time-series data (2301.03915v2)

Published 10 Jan 2023 in cs.DC

Abstract: Learning an automaton that approximates the behavior of a black-box system is a long-studied problem. Besides its theoretical significance, its application to search-based testing and model understanding is recently recognized. We present an algorithm to learn a nonlinear hybrid automaton (HA) that approximates a black-box hybrid system (HS) from a set of input--output traces generated by the HS. Our method is novel in handling (1) both exogenous and endogenous HS and (2) HA with reset associated with each transition. To our knowledge, ours is the first method that achieves both features. We applied our algorithm to various benchmarks and confirmed its effectiveness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.