Papers
Topics
Authors
Recent
2000 character limit reached

Generative Emotional AI for Speech Emotion Recognition: The Case for Synthetic Emotional Speech Augmentation

Published 10 Jan 2023 in cs.SD and eess.AS | (2301.03751v1)

Abstract: Despite advances in deep learning, current state-of-the-art speech emotion recognition (SER) systems still have poor performance due to a lack of speech emotion datasets. This paper proposes augmenting SER systems with synthetic emotional speech generated by an end-to-end text-to-speech (TTS) system based on an extended Tacotron architecture. The proposed TTS system includes encoders for speaker and emotion embeddings, a sequence-to-sequence text generator for creating Mel-spectrograms, and a WaveRNN to generate audio from the Mel-spectrograms. Extensive experiments show that the quality of the generated emotional speech can significantly improve SER performance on multiple datasets, as demonstrated by a higher mean opinion score (MOS) compared to the baseline. The generated samples were also effective at augmenting SER performance.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.