Papers
Topics
Authors
Recent
2000 character limit reached

Quantitative compactness estimates for stochastic conservation laws

Published 9 Jan 2023 in math.AP | (2301.03452v1)

Abstract: We present a quantitative compensated compactness estimate for stochastic conservation laws, which generalises a previous result of Golse & Perthame (2013) for deterministic equations. With a stochastic modification of Kruzkov's interpolation lemma, this estimate provides bounds on the rate at which a sequence of vanishing viscosity solutions becomes compact. This contribution is for the Proceedings of HYP2022.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.