Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nearest Neighbor-Based Contrastive Learning for Hyperspectral and LiDAR Data Classification

Published 9 Jan 2023 in eess.IV and cs.CV | (2301.03335v1)

Abstract: The joint hyperspectral image (HSI) and LiDAR data classification aims to interpret ground objects at more detailed and precise level. Although deep learning methods have shown remarkable success in the multisource data classification task, self-supervised learning has rarely been explored. It is commonly nontrivial to build a robust self-supervised learning model for multisource data classification, due to the fact that the semantic similarities of neighborhood regions are not exploited in existing contrastive learning framework. Furthermore, the heterogeneous gap induced by the inconsistent distribution of multisource data impedes the classification performance. To overcome these disadvantages, we propose a Nearest Neighbor-based Contrastive Learning Network (NNCNet), which takes full advantage of large amounts of unlabeled data to learn discriminative feature representations. Specifically, we propose a nearest neighbor-based data augmentation scheme to use enhanced semantic relationships among nearby regions. The intermodal semantic alignments can be captured more accurately. In addition, we design a bilinear attention module to exploit the second-order and even high-order feature interactions between the HSI and LiDAR data. Extensive experiments on four public datasets demonstrate the superiority of our NNCNet over state-of-the-art methods. The source codes are available at \url{https://github.com/summitgao/NNCNet}.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.