Papers
Topics
Authors
Recent
2000 character limit reached

Online Fake Review Detection Using Supervised Machine Learning And BERT Model

Published 9 Jan 2023 in cs.CL, cs.AI, and cs.IR | (2301.03225v1)

Abstract: Online shopping stores have grown steadily over the past few years. Due to the massive growth of these businesses, the detection of fake reviews has attracted attention. Fake reviews are seriously trying to mislead customers and thereby undermine the honesty and authenticity of online shopping environments. So far, various fake review classifiers have been proposed that take into account the actual content of the review. To improve the accuracies of existing fake review classification or detection approaches, we propose to use BERT (Bidirectional Encoder Representation from Transformers) model to extract word embeddings from texts (i.e. reviews). Word embeddings are obtained in various basic methods such as SVM (Support vector machine), Random Forests, Naive Bayes, and others. The confusion matrix method was also taken into account to evaluate and graphically represent the results. The results indicate that the SVM classifiers outperform the others in terms of accuracy and f1-score with an accuracy of 87.81%, which is 7.6% higher than the classifier used in the previous study [5].

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.