Strichartz estimates for the Schrödinger equation on products of odd-dimensional spheres (2301.02823v1)
Abstract: We prove Strichartz estimates for the Schr\"odinger equation which are scale-invariant up to an $\varepsilon$-loss on products of odd-dimensional spheres. Namely, for any product of odd-dimensional spheres $M=\mathbb{S}{d_1}\times\cdots\times\mathbb{S}{d_r}$ (so that $M$ is of dimension $d=d_1+\cdots+d_r$ and rank $r$) equipped with rational metrics, the following Strichartz estimate \begin{equation*} |e{it\Delta}f|_{Lp(I\times M)}\leq C_\varepsilon|f|_{H{\frac{d}{2}-\frac{d+2}{p}+\varepsilon}(M)} \end{equation*} holds for any $p\geq 2+\frac{8(s-1)}{sr}$, where $$s=\max\left{\frac{2d_i}{d_i-1}, i=1,\ldots,r\right}.$$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.