Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes (2301.02511v3)
Abstract: In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step-sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Up-to-now there is no systematic and successful way of selecting the primal and dual step-sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms, and prove their convergence under weak assumptions. We also propose concrete parameters-updating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.