Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Primal-Dual Damping algorithms for optimization (2304.14574v2)

Published 28 Apr 2023 in math.OC

Abstract: We propose an unconstrained optimization method based on the well-known primal-dual hybrid gradient (PDHG) algorithm. We first formulate the optimality condition of the unconstrained optimization problem as a saddle point problem. We then compute the minimizer by applying generalized primal-dual hybrid gradient algorithms. Theoretically, we demonstrate the continuous-time limit of the proposed algorithm forms a class of second-order differential equations, which contains and extends the heavy ball ODEs and Hessian-driven damping dynamics. Following the Lyapunov analysis of the ODE system, we prove the linear convergence of the algorithm for strongly convex functions. Experimentally, we showcase the advantage of algorithms on several convex and non-convex optimization problems by comparing the performance with other well-known algorithms, such as Nesterov's accelerated gradient methods. In particular, we demonstrate that our algorithm is efficient in training two-layer and convolution neural networks in supervised learning problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube