Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal subsampling algorithm for composite quantile regression with distributed data

Published 6 Jan 2023 in stat.CO | (2301.02448v1)

Abstract: For massive data stored at multiple machines, we propose a distributed subsampling procedure for the composite quantile regression. By establishing the consistency and asymptotic normality of the composite quantile regression estimator from a general subsampling algorithm, we derive the optimal subsampling probabilities and the optimal allocation sizes under the L-optimality criteria. A two-step algorithm to approximate the optimal subsampling procedure is developed. The proposed methods are illustrated through numerical experiments on simulated and real datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.