On $\varepsilon$-factorised bases and pure Feynman integrals (2301.02264v2)
Abstract: We investigate $\varepsilon$-factorised differential equations, uniform transcendental weight and purity for Feynman integrals. We are in particular interested in Feynman integrals beyond the ones which evaluate to multiple polylogarithms. We show that a $\varepsilon$-factorised differential equation does not necessarily lead to Feynman integrals of uniform transcendental weight. We also point out that a proposed definition of purity works locally, but not globally.
- J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806.
- F. Cachazo, (2008), arXiv:0803.1988.
- JHEP 06, 125 (2012), arXiv:1012.6032.
- JHEP 11, 039 (2017), arXiv:1703.04541.
- A. Primo and L. Tancredi, Nucl. Phys. B916, 94 (2017), arXiv:1610.08397.
- A. Primo and L. Tancredi, Nucl. Phys. B921, 316 (2017), arXiv:1704.05465.
- JHEP 06, 059 (2017), arXiv:1704.05460.
- Phys. Rev. D 104, 125009 (2021), arXiv:2102.02210.
- H. Frellesvig, JHEP 03, 079 (2022), arXiv:2110.07968.
- L. Adams and S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018), arXiv:1704.08895.
- L. Adams and S. Weinzierl, Phys. Lett. B781, 270 (2018), arXiv:1802.05020.
- Nucl. Phys. B 954, 114991 (2020), arXiv:1907.01251.
- H. Müller and S. Weinzierl, JHEP 07, 101 (2022), arXiv:2205.04818.
- JHEP 09, 062 (2022), arXiv:2207.12893.
- Phys. Rev. Lett. 130, 101601 (2023), arXiv:2211.04292.
- JHEP 04, 117 (2023), arXiv:2212.08908.
- JHEP 02, 228 (2023), arXiv:2212.09550.
- M. Giroux and A. Pokraka, JHEP 03, 155 (2023), arXiv:2210.09898.
- JHEP 01, 023 (2019), arXiv:1809.10698.
- JHEP 05, 093 (2018), arXiv:1712.07089.
- Phys. Rev. D98, 113008 (2018), arXiv:1811.09308.
- S. Weinzierl, Nucl. Phys. B 964, 115309 (2021), arXiv:2011.07311.
- S. Weinzierl, Feynman Integrals (Springer, 2022), arXiv:2201.03593.
- W. A. Stein, Modular Forms, a Computational Approach (American Mathematical Society, 2007).
- T. Miyake, Modular Forms (Springer, 1989).
- F. Diamond and J. Shurman, A First Course in Modular Forms (Springer, 2005).
- H. Frellesvig and C. G. Papadopoulos, JHEP 04, 083 (2017), arXiv:1701.07356.
- JHEP 08, 014 (2018), arXiv:1803.10256.
- JHEP 05, 120 (2019), arXiv:1902.09971.
- F. Brown, (2014), arXiv:1407.5167.
- M. Walden and S. Weinzierl, Comput. Phys. Commun. 265, 108020 (2021), arXiv:2010.05271.
- C. Duhr and L. Tancredi, JHEP 02, 105 (2020), arXiv:1912.00077.
- J. Math. Phys. 57, 032304 (2016), arXiv:1512.05630.
- J. Math. Phys. 43, 3363 (2002), hep-ph/0110083.
- S. Weinzierl, Comput. Phys. Commun. 145, 357 (2002), math-ph/0201011.
- S. Moch and P. Uwer, Comput. Phys. Commun. 174, 759 (2006), math-ph/0508008.
- T. Huber and D. Maitre, Comput. Phys. Commun. 175, 122 (2006), hep-ph/0507094.
- JHEP 03, 189 (2016), arXiv:1601.02649.
- JHEP 05, 038 (2020), arXiv:2002.07776.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.