Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Data Augmentation and Classification of Sea-Land Clutter for Over-the-Horizon Radar Using AC-VAEGAN (2301.00947v1)

Published 3 Jan 2023 in eess.SY and cs.SY

Abstract: In the sea-land clutter classification of sky-wave over-the-horizon-radar (OTHR), the imbalanced and scarce data leads to a poor performance of the deep learning-based classification model. To solve this problem, this paper proposes an improved auxiliary classifier generative adversarial network~(AC-GAN) architecture, namely auxiliary classifier variational autoencoder generative adversarial network (AC-VAEGAN). AC-VAEGAN can synthesize higher quality sea-land clutter samples than AC-GAN and serve as an effective tool for data augmentation. Specifically, a 1-dimensional convolutional AC-VAEGAN architecture is designed to synthesize sea-land clutter samples. Additionally, an evaluation method combining both traditional evaluation of GAN domain and statistical evaluation of signal domain is proposed to evaluate the quality of synthetic samples. Using a dataset of OTHR sea-land clutter, both the quality of the synthetic samples and the performance of data augmentation of AC-VAEGAN are verified. Further, the effect of AC-VAEGAN as a data augmentation method on the classification performance of imbalanced and scarce sea-land clutter samples is validated. The experiment results show that the quality of samples synthesized by AC-VAEGAN is better than that of AC-GAN, and the data augmentation method with AC-VAEGAN is able to improve the classification performance in the case of imbalanced and scarce sea-land clutter samples.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.