Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Diagnosis of ultrafast ultraintense laser pulse characteristics by machine-learning-assisted electron spin (2301.00162v1)

Published 31 Dec 2022 in physics.plasm-ph

Abstract: Rapid development of ultrafast ultraintense laser technologies continues to create opportunities for studying strong-field physics under extreme conditions. However, accurate determination of the spatial and temporal characteristics of a laser pulse is still a great challenge, especially when laser powers higher than hundreds of terawatts are involved. In this paper, by utilizing the radiative spin-flip effect, we find that the spin depolarization of an electron beam can be employed to diagnose characteristics of ultrafast ultraintense lasers with peak intensities around $10{20}$-$10{22}$~W/cm$2$. With three shots, our machine-learning-assisted model can predict, simultaneously, the pulse duration, peak intensity, and focal radius of a focused Gaussian ultrafast ultraintense laser (in principle, the profile can be arbitrary) with relative errors of $0.1\%$-$10\%$. The underlying physics and an alternative diagnosis method (without the assistance of machine learning) are revealed by the asymptotic approximation of the final spin degree of polarization. Our proposed scheme exhibits robustness and detection accuracy with respect to fluctuations in the electron beam parameters. Accurate measurements of the ultrafast ultraintense laser parameters will lead to much higher precision in, for example, laser nuclear physics investigations and laboratory astrophysics studies. Robust machine learning techniques may also find applications in more general strong-field physics scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube