Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Uncertainty quantification for sparse Fourier recovery (2212.14864v2)

Published 30 Dec 2022 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian designs. However, in many applications, such as magnetic resonance imaging (MRI), the measurement process possesses a certain structure due to the nature of the problem. The measurement operator in MRI can be described by a subsampled Fourier matrix. The purpose of this work is to extend the uncertainty quantification process using the desparsified LASSO to design matrices originating from a bounded orthonormal system, which naturally generalizes the subsampled Fourier case and also allows for the treatment of the case where the sparsity basis is not the standard basis. In particular we construct honest confidence intervals for every pixel of an MR image that is sparse in the standard basis provided the number of measurements satisfies $n \gtrsim\max{ s\log2 s\log p, s \log2 p }$ or that is sparse with respect to the Haar Wavelet basis provided a slightly larger number of measurements.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.