Papers
Topics
Authors
Recent
2000 character limit reached

TensorFHE: Achieving Practical Computation on Encrypted Data Using GPGPU (2212.14191v1)

Published 29 Dec 2022 in cs.AR and cs.CR

Abstract: In this paper, we propose TensorFHE, an FHE acceleration solution based on GPGPU for real applications on encrypted data. TensorFHE utilizes Tensor Core Units (TCUs) to boost the computation of Number Theoretic Transform (NTT), which is the part of FHE with highest time-cost. Moreover, TensorFHE focuses on performing as many FHE operations as possible in a certain time period rather than reducing the latency of one operation. Based on such an idea, TensorFHE introduces operation-level batching to fully utilize the data parallelism in GPGPU. We experimentally prove that it is possible to achieve comparable performance with GPGPU as with state-of-the-art ASIC accelerators. TensorFHE performs 913 KOPS and 88 KOPS for NTT and HMULT (key FHE kernels) within NVIDIA A100 GPGPU, which is 2.61x faster than state-of-the-art FHE implementation on GPGPU; Moreover, TensorFHE provides comparable performance to the ASIC FHE accelerators, which makes it even 2.9x faster than the F1+ with a specific workload. Such a pure software acceleration based on commercial hardware with high performance can open up usage of state-of-the-art FHE algorithms for a broad set of applications in real systems.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.