Non-Gaussian fluctuation dynamics in relativistic fluids (2212.14029v2)
Abstract: We consider non-equilibrium evolution of non-Gaussian fluctuations within relativistic hydrodynamics relevant for the QCD critical point search in heavy-ion collision experiments. We rely on the hierarchy of relaxation time scales, which emerges in the hydrodynamic regime near the critical point, to focus on the slowest mode such as the fluctuations of specific entropy, whose equilibrium magnitude, non-Gaussianity and typical relaxation time are increasing as the critical point is approached. We derive evolution equations for the non-Gaussian correlators of this diffusive mode in an arbitrary relativistic hydrodynamic flow. We compare with the simpler case of the stochastic diffusion on a static homogeneous background and identify terms which are specific to the case of the full hydrodynamics with pressure fluctuations and flow.
- Elsevier Science, 2013.
- S. Jeon and U. Heinz, “Introduction to Hydrodynamics,” Int. J. Mod. Phys. E 24 no. 10, (2015) 1530010, arXiv:1503.03931 [hep-ph].
- P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium – Ten Years of Progress in Theory and Numerical Simulations of Nuclear Collisions. Cambridge University Press, 2019. arXiv:1712.05815 [nucl-th].
- STAR Collaboration, M. M. Aggarwal et al., “An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement,” arXiv:1007.2613 [nucl-ex].
- M. Stephanov, K. Rajagopal, and E. Shuryak, “Signatures of the tricritical point in QCD,” Phys.Rev.Lett. 81 (1998) 4816–4819, arXiv:hep-ph/9806219 [hep-ph].
- M. Stephanov, K. Rajagopal, and E. Shuryak, “Event-by-event fluctuations in heavy ion collisions and the QCD critical point,” Phys. Rev. D 60 (1999) 114028, arXiv:hep-ph/9903292.
- M. Stephanov, “QCD phase diagram and the critical point,” Prog. Theor. Phys. Suppl. 153 (2004) 139–156, arXiv:hep-ph/0402115.
- A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu, “Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan,” arXiv:1906.00936 [nucl-th].
- X. An et al., “The BEST framework for the search for the QCD critical point and the chiral magnetic effect,” Nucl. Phys. A 1017 (2022) 122343, arXiv:2108.13867 [nucl-th].
- M. Stephanov, “Non-Gaussian fluctuations near the QCD critical point,” Phys. Rev. Lett. 102 (2009) 032301, arXiv:0809.3450 [hep-ph].
- M. Stephanov, “On the sign of kurtosis near the QCD critical point,” Phys. Rev. Lett. 107 (2011) 052301, arXiv:1104.1627 [hep-ph].
- STAR Collaboration, M. Abdallah et al., “Cumulants and correlation functions of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 104 no. 2, (2021) 024902, arXiv:2101.12413 [nucl-ex].
- B. Berdnikov and K. Rajagopal, “Slowing out-of-equilibrium near the QCD critical point,” Phys. Rev. D 61 (2000) 105017, arXiv:hep-ph/9912274 [hep-ph].
- S. Mukherjee, R. Venugopalan, and Y. Yin, “Real time evolution of non-Gaussian cumulants in the QCD critical regime,” Phys. Rev. C 92 (2015) 034912, arXiv:1506.00645 [hep-ph].
- Y. Akamatsu, A. Mazeliauskas, and D. Teaney, “Kinetic regime of hydrodynamic fluctuations and long time tails for a bjorken expansion,” Phys. Rev. C 95 (Jan, 2017) 014909.
- Y. Akamatsu, A. Mazeliauskas, and D. Teaney, “Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory,” Phys. Rev. C 97 (Feb, 2018) 024902.
- M. Martinez and T. Schäfer, “Stochastic hydrodynamics and long time tails of an expanding conformal charged fluid,” Phys. Rev. C 99 no. 5, (2019) 054902, arXiv:1812.05279 [hep-th].
- X. An, G. Başar, M. Stephanov, and H.-U. Yee, “Relativistic Hydrodynamic Fluctuations,” Phys. Rev. C 100 (2019) 024910, arXiv:1902.09517 [hep-th].
- X. An, G. Başar, M. Stephanov, and H.-U. Yee, “Fluctuation dynamics in a relativistic fluid with a critical point,” Phys. Rev. C 102 (2020) 034901, arXiv:1912.13456 [hep-th].
- X. An, “Relativistic dynamics of fluctuations and QCD critical point,” Nucl. Phys. A 1005 (2021) 121957, arXiv:2003.02828 [hep-th].
- X. An, G. Başar, M. Stephanov, and H.-U. Yee, “Evolution of non-gaussian hydrodynamic fluctuations,” Phys. Rev. Lett. 127 (2021) 072301, arXiv:2009.10742 [hep-th].
- X. An, “Non-gaussian fluctuation dynamics,” Acta Phys. Pol. B Proc. Suppl. 16 (2023) 1–A47, arXiv:2209.15005 [hep-th].
- A. Andreev, “Two-liquid effects in a normal liquid,” Zh. Ehksp. Teor. Fiz. 59 (1970) 1819–1827.
- A. Andreev, “Corrections to the hydrodynamics of liquids,” Zh. Ehksp. Teor. Fiz. 75 no. 3, (1978) 1132–1139.
- S. Mukherjee, R. Venugopalan, and Y. Yin, “Universal off-equilibrium scaling of critical cumulants in the QCD phase diagram,” Phys. Rev. Lett. 117 no. 22, (2016) 222301, arXiv:1605.09341 [hep-ph].
- M. Nahrgang, M. Bluhm, T. Schaefer, and S. A. Bass, “Diffusive dynamics of critical fluctuations near the QCD critical point,” Phys. Rev. D 99 no. 11, (2019) 116015, arXiv:1804.05728 [nucl-th].
- N. Sogabe and Y. Yin, “Off-equilibrium non-Gaussian fluctuations near the QCD critical point: an effective field theory perspective,” JHEP 03 (2022) 124, arXiv:2111.14667 [nucl-th].
- M. Stephanov and Y. Yin, “Hydrodynamics with parametric slowing down and fluctuations near the critical point,” Phys. Rev. D 98 (Aug, 2018) 036006.
- P. Hohenberg and B. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys. 49 (Jul, 1977) 435–479.
- M. S. Pradeep and M. Stephanov, “Maximum entropy freezeout of hydrodynamic fluctuations,” arXiv:2211.09142 [hep-ph].
- STAR Collaboration, “Beam Energy Dependence of Fifth and Sixth-Order Net-proton Number Fluctuations in Au+Au Collisions at RHIC,” Phys. Rev. Lett. 130 (7, 2023) 082301, arXiv:2207.09837 [nucl-ex].
- J. I. Kapusta, B. Muller, and M. Stephanov, “Relativistic Theory of Hydrodynamic Fluctuations with Applications to Heavy Ion Collisions,” Phys. Rev. C 85 (2012) 054906, arXiv:1112.6405 [nucl-th].
- K. Rajagopal, G. Ridgway, R. Weller, and Y. Yin, “Understanding the out-of-equilibrium dynamics near a critical point in the qcd phase diagram,” Phys. Rev. D 102 (Nov, 2020) 094025, arXiv:1908.08539 [hep-ph].
- L. Du, U. Heinz, K. Rajagopal, and Y. Yin, “Fluctuation dynamics near the QCD critical point,” Phys. Rev. C 102 no. 5, (2020) 054911, arXiv:2004.02719 [nucl-th].
- M. Pradeep, K. Rajagopal, M. Stephanov, and Y. Yin, “Freezing out fluctuations in Hydro+ near the QCD critical point,” arXiv:2204.00639 [hep-ph].
- P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, and M. Stephanov, “QCD equation of state matched to lattice data and exhibiting a critical point singularity,” Phys. Rev. C 101 no. 3, (2020) 034901, arXiv:1805.05249 [hep-ph].
- J. M. Karthein, D. Mroczek, A. R. Nava Acuna, J. Noronha-Hostler, P. Parotto, D. R. P. Price, and C. Ratti, “Strangeness-neutral equation of state for QCD with a critical point,” Eur. Phys. J. Plus 136 no. 6, (2021) 621, arXiv:2103.08146 [hep-ph].
- J. I. Kapusta, C. Plumberg, and T. Welle, “Embedding a critical point in a hadron to quark-gluon crossover equation of state,” arXiv:2112.07563 [nucl-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.