Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lax comma categories of ordered sets

Published 27 Dec 2022 in math.CT and math.GN | (2212.13541v3)

Abstract: Let $\mathsf{Ord} $ be the category of (pre)ordered sets. Unlike $\mathsf{Ord}/X$, whose behaviour is well-known, not much can be found in the literature about the lax comma 2-category $\mathsf{Ord} //X$. In this paper we show that the forgetful functor $\mathsf{Ord} //X\to \mathsf{Ord} $ is topological if and only if $X$ is complete. Moreover, under suitable hypothesis, $\mathsf{Ord} // X$ is complete and cartesian closed if and only if $X$ is. We end by analysing descent in this category. Namely, when $X$ is complete and cartesian closed, we show that, for a morphism in $\mathsf{Ord} //X$, being pointwise effective for descent in $\mathsf{Ord} $ is sufficient, while being effective for descent in $\mathsf{Ord} $ is necessary, to be effective for descent in $\mathsf{Ord} //X$.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.