Papers
Topics
Authors
Recent
Search
2000 character limit reached

Insertion algorithms for Gelfand $S_n$-graphs

Published 27 Dec 2022 in math.CO and math.RT | (2212.13373v3)

Abstract: The two tableaux assigned by the Robinson--Schensted correspondence are equal if and only if the input permutation is an involution, so the RS algorithm restricts to a bijection between involutions in the symmetric group and standard tableaux. Beissinger found a concise way of formulating this restricted map, which involves adding an extra cell at the end of a row after a Schensted insertion process. We show that by changing this algorithm slightly to add cells at the end of columns rather than rows, one obtains a different bijection from involutions to standard tableaux. Both maps have an interesting connection to representation theory. Specifically, our insertion algorithms classify the molecules (and conjecturally the cells) in the pair of $W$-graphs associated to the unique equivalence class of perfect models for a generic symmetric group.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.