Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation (2212.12593v2)
Abstract: The first globally convergent numerical method for a Coefficient Inverse Problem (CIP) for the Riemannian Radiative Transfer Equation (RRTE) is constructed. This is a version of the so-called \textquotedblleft convexification" method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman Weight Function (CWF) in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.