Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Grothendieck bound in a single quantum system (2212.11663v1)

Published 22 Dec 2022 in quant-ph

Abstract: Grothendieck's bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a classical' quadratic form ${\cal C}$ that uses complex numbers in the unit disc, and takes values less than $1$. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then thequantum' quadratic form ${\cal Q}$ might take values greater than $1$, up to the complex Grothendieck constant $k_G$. The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the `Grothendieck region' $(1,k_G)$, which is a classically forbidden region in the sense that ${\cal C}$ cannot take values in it. Necessary (but not sufficient) conditions for ${\cal Q}$ taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with $6$ and $12$-dimensional Hilbert space, are shown to lead to ${\cal Q}$ in the Grothendieck region $(1,k_G)$. They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube