Papers
Topics
Authors
Recent
2000 character limit reached

Multidimensional Graph Neural Networks for Wireless Communications (2212.11531v2)

Published 22 Dec 2022 in eess.SP

Abstract: Graph neural networks (GNNs) have been shown promising in improving the efficiency of learning communication policies by leveraging their permutation properties. Nonetheless, existing works design GNNs only for specific wireless policies, lacking a systematical approach for modeling graph and selecting structure. Based on the observation that the mismatched permutation property from the policies and the information loss during the update of hidden representations have large impact on the learning performance and efficiency, in this paper we propose a unified framework to learn permutable wireless policies with multidimensional GNNs. To avoid the information loss, the GNNs update the hidden representations of hyper-edges. To exploit all possible permutations of a policy, we provide a method to identify vertices in a graph. We also investigate the permutability of wireless channels that affects the sample efficiency, and show how to trade off the training, inference, and designing complexities of GNNs. We take precoding in different systems as examples to demonstrate how to apply the framework. Simulation results show that the proposed GNNs can achieve close performance to numerical algorithms, and require much fewer training samples and trainable parameters to achieve the same learning performance as the commonly used convolutional neural networks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.