Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

kalis: A Modern Implementation of the Li & Stephens Model for Local Ancestry Inference in R (2212.11403v1)

Published 21 Dec 2022 in stat.CO and stat.AP

Abstract: Approximating the recent phylogeny of $N$ phased haplotypes at a set of variants along the genome is a core problem in modern population genomics and central to performing genome-wide screens for association, selection, introgression, and other signals. The Li & Stephens (LS) model provides a simple yet powerful hidden Markov model for inferring the recent ancestry at a given variant, represented as an $N \times N$ distance matrix based on posterior decodings. However, existing posterior decoding implementations for the LS model cannot scale to modern datasets with tens or hundreds of thousands of genomes. This work focuses on providing a high-performance engine to compute the LS model, enabling users to rapidly develop a range of variant-specific ancestral inference pipelines on top, exposed via an easy to use package, kalis, in the statistical programming language R. kalis exploits both multi-core parallelism and modern CPU vector instruction sets to enable scaling to problem sizes that would previously have been prohibitively slow to work with. The resulting distance matrices enable local ancestry, selection, and association studies in modern large scale genomic datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.