Papers
Topics
Authors
Recent
Search
2000 character limit reached

BDSP: A Fair Blockchain-enabled Framework for Privacy-Enhanced Enterprise Data Sharing

Published 16 Dec 2022 in cs.CR | (2212.11128v1)

Abstract: Across industries, there is an ever-increasing rate of data sharing for collaboration and innovation between organizations and their customers, partners, suppliers, and internal teams. However, many enterprises are restricted from freely sharing data due to regulatory restrictions across different regions, performance issues in moving large volume data, or requirements to maintain autonomy. In such situations, the enterprise can benefit from the concept of federated learning, in which machine learning models are constructed at various geographic sites. In this paper, we introduce a general framework, namely BDSP, to share data among enterprises based on Blockchain and federated learning techniques. Specifically, we propose a transparency contribution accounting mechanism to estimate the valuation of data and implement a proof-of-concept for further evaluation. The extensive experimental results show that the proposed BDSP has a competitive performance with higher training accuracy, an increase of over 5%, and lower communication overhead, reducing 3 times, compared to baseline approaches.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.