Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Hierarchically branched diffusion models leverage dataset structure for class-conditional generation (2212.10777v4)

Published 21 Dec 2022 in cs.LG and cs.AI

Abstract: Class-labeled datasets, particularly those common in scientific domains, are rife with internal structure, yet current class-conditional diffusion models ignore these relationships and implicitly diffuse on all classes in a flat fashion. To leverage this structure, we propose hierarchically branched diffusion models as a novel framework for class-conditional generation. Branched diffusion models rely on the same diffusion process as traditional models, but learn reverse diffusion separately for each branch of a hierarchy. We highlight several advantages of branched diffusion models over the current state-of-the-art methods for class-conditional diffusion, including extension to novel classes in a continual-learning setting, a more sophisticated form of analogy-based conditional generation (i.e. transmutation), and a novel interpretability into the generation process. We extensively evaluate branched diffusion models on several benchmark and large real-world scientific datasets spanning many data modalities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 2020 583:7817, 583:590–595, 7 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2496-1. URL https://www.nature.com/articles/s41586-020-2496-1.
  2. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 376, 5 2022. ISSN 10959203. doi: 10.1126/SCIENCE.ABL5197/SUPPL_FILE/SCIENCE.ABL5197_MDAR_REPRODUCIBILITY_CHECKLIST.PDF. URL https://www.science.org/doi/10.1126/science.abl5197.
  3. Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 12 2021.
  4. Score-based generative modeling with critically-damped langevin diffusion. 12 2021. doi: 10.48550/arxiv.2112.07068. URL https://arxiv.org/abs/2112.07068v4.
  5. Felsenstein, J. Phylip. URL https://evolution.genetics.washington.edu/phylip.html.
  6. Letter recognition using holland-style adaptive classifiers. Machine Learning, 6:161–182, 1991. ISSN 15730565. doi: 10.1023/A:1022606404104/METRICS. URL https://link.springer.com/article/10.1023/A:1022606404104.
  7. A python library for probabilistic analysis of single-cell omics data. Nature Biotechnology 2022 40:2, 40:163–166, 2 2022. ISSN 1546-1696. doi: 10.1038/s41587-021-01206-w. URL https://www.nature.com/articles/s41587-021-01206-w.
  8. Construction of a human cell landscape at single-cell level. Nature 2020 581:7808, 581:303–309, 3 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2157-4. URL https://www.nature.com/articles/s41586-020-2157-4.
  9. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020. URL https://github.com/hojonathanho/diffusion.
  10. Classifier-free diffusion guidance, 11 2021.
  11. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646, 12 2022. URL https://video-diffusion.github.io/.
  12. Zinc: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52:1757–1768, 7 2012. ISSN 1549960X. doi: 10.1021/CI3001277/SUPPL_FILE/CI3001277_SI_001.PDF. URL https://pubs.acs.org/doi/full/10.1021/ci3001277.
  13. Score-based generative modeling of graphs via the system of stochastic differential equations. 2 2022. doi: 10.48550/arxiv.2202.02514. URL https://arxiv.org/abs/2202.02514v3.
  14. On fast sampling of diffusion probabilistic models, 6 2021.
  15. Tabddpm: Modelling tabular data with diffusion models. 9 2022. doi: 10.48550/arxiv.2209.15421. URL https://arxiv.org/abs/2209.15421v1.
  16. Mnist handwritten digit database. URL http://yann.lecun.com/exdb/mnist/.
  17. Immunophenotyping of covid-19 and influenza highlights the role of type i interferons in development of severe covid-19. Science Immunology, 5:1554, 7 2020. ISSN 24709468. doi: 10.1126/SCIIMMUNOL.ABD1554/SUPPL_FILE/TABLE_S9.XLSX. URL https://www.science.org/doi/10.1126/sciimmunol.abd1554.
  18. Mapping single-cell data to reference atlases by transfer learning. Nature Biotechnology 2021 40:1, 40:121–130, 8 2021. ISSN 1546-1696. doi: 10.1038/s41587-021-01001-7. URL https://www.nature.com/articles/s41587-021-01001-7.
  19. The human cell atlas. eLife, 6, 12 2017. ISSN 2050084X. doi: 10.7554/ELIFE.27041.
  20. High-resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.  10674–10685, 6 2022. doi: 10.1109/CVPR52688.2022.01042. URL https://ieeexplore.ieee.org/document/9878449/.
  21. Deep unsupervised learning using nonequilibrium thermodynamics. 32nd International Conference on Machine Learning, ICML 2015, 3:2246–2255, 3 2015. doi: 10.48550/arxiv.1503.03585. URL https://arxiv.org/abs/1503.03585v8.
  22. Score-based generative modeling through stochastic differential equations. 2021.
  23. Three scenarios for continual learning. 4 2019. doi: 10.48550/arxiv.1904.07734. URL https://arxiv.org/abs/1904.07734v1.
  24. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:3614–3633, 7 2022. ISSN 19393539. doi: 10.1109/TPAMI.2021.3054719.
  25. Learning to efficiently sample from diffusion probabilistic models. 6 2021. doi: 10.48550/arxiv.2106.03802. URL https://arxiv.org/abs/2106.03802v1.
  26. Scanpy: Large-scale single-cell gene expression data analysis. Genome Biology, 19:1–5, 2 2018. ISSN 1474760X. doi: 10.1186/S13059-017-1382-0/FIGURES/1. URL https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0.
  27. Tackling the generative learning trilemma with denoising diffusion gans, 1 2022. URL https://nvlabs.github.io/denoising-diffusion-gan.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube