Hierarchically branched diffusion models leverage dataset structure for class-conditional generation (2212.10777v4)
Abstract: Class-labeled datasets, particularly those common in scientific domains, are rife with internal structure, yet current class-conditional diffusion models ignore these relationships and implicitly diffuse on all classes in a flat fashion. To leverage this structure, we propose hierarchically branched diffusion models as a novel framework for class-conditional generation. Branched diffusion models rely on the same diffusion process as traditional models, but learn reverse diffusion separately for each branch of a hierarchy. We highlight several advantages of branched diffusion models over the current state-of-the-art methods for class-conditional diffusion, including extension to novel classes in a continual-learning setting, a more sophisticated form of analogy-based conditional generation (i.e. transmutation), and a novel interpretability into the generation process. We extensively evaluate branched diffusion models on several benchmark and large real-world scientific datasets spanning many data modalities.
- A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 2020 583:7817, 583:590–595, 7 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2496-1. URL https://www.nature.com/articles/s41586-020-2496-1.
- Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 376, 5 2022. ISSN 10959203. doi: 10.1126/SCIENCE.ABL5197/SUPPL_FILE/SCIENCE.ABL5197_MDAR_REPRODUCIBILITY_CHECKLIST.PDF. URL https://www.science.org/doi/10.1126/science.abl5197.
- Diffusion models beat gans on image synthesis. Advances in Neural Information Processing Systems, 34:8780–8794, 12 2021.
- Score-based generative modeling with critically-damped langevin diffusion. 12 2021. doi: 10.48550/arxiv.2112.07068. URL https://arxiv.org/abs/2112.07068v4.
- Felsenstein, J. Phylip. URL https://evolution.genetics.washington.edu/phylip.html.
- Letter recognition using holland-style adaptive classifiers. Machine Learning, 6:161–182, 1991. ISSN 15730565. doi: 10.1023/A:1022606404104/METRICS. URL https://link.springer.com/article/10.1023/A:1022606404104.
- A python library for probabilistic analysis of single-cell omics data. Nature Biotechnology 2022 40:2, 40:163–166, 2 2022. ISSN 1546-1696. doi: 10.1038/s41587-021-01206-w. URL https://www.nature.com/articles/s41587-021-01206-w.
- Construction of a human cell landscape at single-cell level. Nature 2020 581:7808, 581:303–309, 3 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2157-4. URL https://www.nature.com/articles/s41586-020-2157-4.
- Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020. URL https://github.com/hojonathanho/diffusion.
- Classifier-free diffusion guidance, 11 2021.
- Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646, 12 2022. URL https://video-diffusion.github.io/.
- Zinc: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52:1757–1768, 7 2012. ISSN 1549960X. doi: 10.1021/CI3001277/SUPPL_FILE/CI3001277_SI_001.PDF. URL https://pubs.acs.org/doi/full/10.1021/ci3001277.
- Score-based generative modeling of graphs via the system of stochastic differential equations. 2 2022. doi: 10.48550/arxiv.2202.02514. URL https://arxiv.org/abs/2202.02514v3.
- On fast sampling of diffusion probabilistic models, 6 2021.
- Tabddpm: Modelling tabular data with diffusion models. 9 2022. doi: 10.48550/arxiv.2209.15421. URL https://arxiv.org/abs/2209.15421v1.
- Mnist handwritten digit database. URL http://yann.lecun.com/exdb/mnist/.
- Immunophenotyping of covid-19 and influenza highlights the role of type i interferons in development of severe covid-19. Science Immunology, 5:1554, 7 2020. ISSN 24709468. doi: 10.1126/SCIIMMUNOL.ABD1554/SUPPL_FILE/TABLE_S9.XLSX. URL https://www.science.org/doi/10.1126/sciimmunol.abd1554.
- Mapping single-cell data to reference atlases by transfer learning. Nature Biotechnology 2021 40:1, 40:121–130, 8 2021. ISSN 1546-1696. doi: 10.1038/s41587-021-01001-7. URL https://www.nature.com/articles/s41587-021-01001-7.
- The human cell atlas. eLife, 6, 12 2017. ISSN 2050084X. doi: 10.7554/ELIFE.27041.
- High-resolution image synthesis with latent diffusion models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 6 2022. doi: 10.1109/CVPR52688.2022.01042. URL https://ieeexplore.ieee.org/document/9878449/.
- Deep unsupervised learning using nonequilibrium thermodynamics. 32nd International Conference on Machine Learning, ICML 2015, 3:2246–2255, 3 2015. doi: 10.48550/arxiv.1503.03585. URL https://arxiv.org/abs/1503.03585v8.
- Score-based generative modeling through stochastic differential equations. 2021.
- Three scenarios for continual learning. 4 2019. doi: 10.48550/arxiv.1904.07734. URL https://arxiv.org/abs/1904.07734v1.
- Multi-task learning for dense prediction tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44:3614–3633, 7 2022. ISSN 19393539. doi: 10.1109/TPAMI.2021.3054719.
- Learning to efficiently sample from diffusion probabilistic models. 6 2021. doi: 10.48550/arxiv.2106.03802. URL https://arxiv.org/abs/2106.03802v1.
- Scanpy: Large-scale single-cell gene expression data analysis. Genome Biology, 19:1–5, 2 2018. ISSN 1474760X. doi: 10.1186/S13059-017-1382-0/FIGURES/1. URL https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0.
- Tackling the generative learning trilemma with denoising diffusion gans, 1 2022. URL https://nvlabs.github.io/denoising-diffusion-gan.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.