Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bayesian Quantum State Tomography with Python's PyMC (2212.10655v1)

Published 20 Dec 2022 in quant-ph, physics.data-an, and physics.optics

Abstract: Quantum state tomography (QST) is typically performed from a frequentist viewpoint using maximum likelihood estimation (MLE) which seeks to find the best plausible state consistent with the data by maximizing a likelihood function / distribution. The likelihood function holds an implicit assumption that there is suitable data to infer frequency. In data-starved experiments, this may or may not be a feasible assumption. Moreover, MLE returns no error estimates on the final solution and users are forced to rely on alternative approaches involving either additional measurements or simulated data. Alternatively, Bayesian methods can return a solution with error estimates consistent with the data's uncertainty, but at the expense of a difficult integration over the likelihood distribution. The integration usually requires computational methods with appropriately chosen step sizes in a somewhat complicated problem formulation. This additional complexity serves as a strong deterrent from using Bayesian methods despite the advantages. Probabilistic programming is becoming a common alternative with growing computational power and the development of robust automated integration techniques such as Markov-Chain Monte Carlo (MCMC). Here, we show how to use Python-3's open source PyMC probabilistic programming package to transform an otherwise complicated QST optimization problem into a simple form that can be quickly optimized with efficient under-the-hood MCMC samplers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.