A universal approach to Krylov State and Operator complexities (2212.10583v3)
Abstract: We present a general framework in which both Krylov state and operator complexities can be put on the same footing. In our formalism, the Krylov complexity is defined in terms of the density matrix of the associated state which, for the operator complexity, lives on a doubled Hilbert space obtained through the channel-state map. This unified definition of complexity in terms of the density matrices enables us to extend the notion of Krylov complexity, to subregion or mixed state complexities and also naturally to the Krylov mutual complexity. We show that this framework also encompasses nicely the holographic notions of complexity.
- C. Lanczos, J. Res. Natl. Bur. Stand. B 45, 255 (1950).
- V. Viswanath and G. Müller, The Recursion Method: Application to Many Body Dynamics, Lecture Notes in Physics Monographs (Springer Berlin Heidelberg, 1994).
- J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
- E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
- L. Susskind, Fortsch. Phys. 64, 24 (2016), [Addendum: Fortsch.Phys. 64, 44–48 (2016)], arXiv:1403.5695 [hep-th] .
- L. Susskind (Springer, 2018) arXiv:1810.11563 [hep-th] .
- D. Stanford and L. Susskind, Phys. Rev. D 90, 126007 (2014), arXiv:1406.2678 [hep-th] .
- M. Alishahiha and S. Banerjee, ‘‘On the saturation of late-time growth of complexity in supersymmetric JT gravity,” (2022), arXiv:2209.02441 [hep-th] .
- M. Alishahiha, “On Quantum Complexity,” (2022), arXiv:2209.14689 [hep-th] .
- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50, 888 (1994).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- Z.-Y. Fan, Phys. Rev. A 105, 062210 (2022a), arXiv:2202.07220 [quant-ph] .
- W. Mück and Y. Yang, Nucl. Phys. B 984, 115948 (2022), arXiv:2205.12815 [hep-th] .
- Z.-Y. Fan, JHEP 08, 232 (2022b), arXiv:2206.00855 [hep-th] .
- M. L. Mehta, Random Matrices (Revised and Enlarged Second Edition), revised and enlarged second edition ed. (Academic Press, San Diego, 1991) p. xv.
- M. Alishahiha and S. Banerjee, To appear soon (2023).
- H. Verlinde, “ER = EPR revisited: On the Entropy of an Einstein-Rosen Bridge,” (2020), arXiv:2003.13117 [hep-th] .
- K. Papadodimas and S. Raju, Phys. Rev. Lett. 115, 211601 (2015), arXiv:1502.06692 [hep-th] .
- D. Harlow, JHEP 01, 122 (2016), arXiv:1510.07911 [hep-th] .
- R. Haag, “Local quantum physics: Fields, particles, algebras,” (1992).
- J. M. Magán and J. Simón, JHEP 05, 071 (2020), arXiv:2002.03865 [hep-th] .
- K. Papadodimas and S. Raju, Phys. Rev. D 89, 086010 (2014), arXiv:1310.6335 [hep-th] .
- M. Alishahiha, Phys. Rev. D 92, 126009 (2015), arXiv:1509.06614 [hep-th] .
- A. Bhattacharyya, T. Hanif, S. S. Haque, and A. Paul, “Decoherence, Entanglement Negativity and Circuit Complexity for Open Quantum System,” (2022b), arXiv:2210.09268 [hep-th] .
- D. A. Lidar, “Lecture notes on the theory of open quantum systems,” (2019).
- J. Maldacena and L. Susskind, Fortsch. Phys. 61, 781 (2013), arXiv:1306.0533 [hep-th] .
- A. Mostafazadeh, J. Math. Phys. 43, 205 (2002), arXiv:math-ph/0107001 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.