Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sharp complexity phase transitions generated by entanglement

Published 20 Dec 2022 in quant-ph and cs.CC | (2212.10582v1)

Abstract: Entanglement is one of the physical properties of quantum systems responsible for the computational hardness of simulating quantum systems. But while the runtime of specific algorithms, notably tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-independent complexity. In this work, we quantitatively connect the entanglement present in certain quantum systems to the computational complexity of simulating those systems. Moreover, we completely characterize the entanglement and complexity as a function of a system parameter. Specifically, we consider the task of simulating single-qubit measurements of $k$--regular graph states on $n$ qubits. We show that, as the regularity parameter is increased from $1$ to $n-1$, there is a sharp transition from an easy regime with low entanglement to a hard regime with high entanglement at $k=3$, and a transition back to easy and low entanglement at $k=n-3$. As a key technical result, we prove a duality for the simulation complexity of regular graph states between low and high regularity.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.