Spectral and Combinatorial Aspects of Cayley-Crystals (2212.10329v5)
Abstract: Owing to their interesting spectral properties, the synthetic crystals over lattices other than regular Euclidean lattices, such as hyperbolic and fractal ones, have attracted renewed attention, especially from materials and meta-materials research communities. They can be studied under the umbrella of quantum dynamics over Cayley graphs of finitely generated groups. In this work, we investigate numerical aspects related to the quantum dynamics over such Cayley graphs. Using an algebraic formulation of the "periodic boundary condition" due to Lueck [Geom. Funct. Anal. 4, 455-481 (1994)], we devise a practical and converging numerical method that resolves the true bulk spectrum of the Hamiltonians. Exact results on the matrix elements of the resolvent, derived from the combinatorics of the Cayley graphs, give us the means to validate our algorithms and also to obtain new combinatorial statements. Our results open the systematic research of quantum dynamics over Cayley graphs of a very large family of finitely generated groups, which includes the free and Fuchsian groups.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.