Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A convergent numerical algorithm for the stochastic growth-fragmentation problem (2212.09091v1)

Published 18 Dec 2022 in math.NA and cs.NA

Abstract: The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain. The simulations of this stochastic process and its invariant measure are of interest. In this paper, we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure, and show that under appropriate assumptions, the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound. With a triangle inequality argument, we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.