A convergent numerical algorithm for the stochastic growth-fragmentation problem (2212.09091v1)
Abstract: The stochastic growth-fragmentation model describes the temporal evolution of a structured cell population through a discrete-time and continuous-state Markov chain. The simulations of this stochastic process and its invariant measure are of interest. In this paper, we propose a numerical scheme for both the simulation of the process and the computation of the invariant measure, and show that under appropriate assumptions, the numerical chain converges to the continuous growth-fragmentation chain with an explicit error bound. With a triangle inequality argument, we are also able to quantitatively estimate the distance between the invariant measures of these two Markov chains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.