A Note On The Canonical Formalism for Gravity (2212.08270v2)
Abstract: We describe a simple gauge-fixing that leads to a construction of a quantum Hilbert space for quantum gravity in an asymptotically Anti de Sitter spacetime, valid to all orders of perturbation theory. The construction is motivated by a relationship of the phase space of gravity in asymptotically Anti de Sitter spacetime to a cotangent bundle. We describe what is known about this relationship and some extensions that might plausibly be true. A key fact is that, under certain conditions, the Einstein Hamiltonian constraint equation can be viewed as a way to gauge fix the group of conformal rescalings of the metric of a Cauchy hypersurface. An analog of the procedure that we follow for Anti de Sitter gravity leads to standard results for a Klein-Gordon particle.
- B. DeWitt, “Quantum Theory of Gravity, I: The Canonical Theory,” Phys,. Rev. 160 (1967) 1113-1148.
- J. W. York, “Role Of Conformal Three-Geometry in the Dynamics of Gravitation,” Phys. Rev. Lett. 28 (1972) 1082-5.
- Y. Choquet-Bruhat, “The Problem of Constraints in General Relativity, Solution of the Lichnerowicz Equation,” in M. Cahen and M. Flato, eds. Differential Geometry and Relativity (D. Reidel, 1976).
- N. O’Murchadha and J. W. York, “Existence and Uniqueness of Solutions of the Hamiltonian Constraint of General Relativity on Compact Manifolds,” J. Math. Phys,. 14 (1973) 1551-1557.
- Y. Choquet-Bruhat and J. Isenberg, “The Cauchy Problem,” in A. Held, ed., General Relativity and Gravitation (Plenum Pres, 1980).
- J. Isenberg, “Constant Mean Curvature Solutions Of The Einstein Constraint Equations On Closed Manifolds,” Class. Quant. Grav. 12 (1995) 2249-74.
- P. Chruściel, “Cauchy Problems for the Einstein Equations: an Introduction,” available at https://homepage.univie.ac.at/piotr.chrusciel/teaching/Cauchy/Roscoff.pdf.
- R. Bartnik and J. Isenberg, “The Constraint Equations,” arXiv:gr-qc/0405092.
- V. Moncrief, “Reduction of the Einstein Equations in (2+1)-Dimensions to a Hamiltonian System over Teichmüller Space,” J. Math. Phys. 30 (1989) 2907-14.
- K. Krasnov and J.-M. Schlenker, “Minimal Surfaces And Particles in 3-Manifolds,” Geom. Dedicata 126 (2007) 187-254, arXiv:math/0511441.
- F. Bonsante and J.-M. Schlenker, “Maximal Surfaces and the Universal Teichmüller Space,” Invent. Math. 182 (2010) 279-333, arXiv:0911.4124.
- C. Scarinci and K. Krasnov, “The Universal Phase Space of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT Gravity,” Commun,. Math. Phys. 322 (2013) 167-205, arXiv:1111.6507.
- E. Witten, “Canonical Quantization in Anti de Sitter Space” (lecture at Princeton Center for Theoretical Science, October 31, 2017), available at http://www.kaltura.com/index.php/extwidget/preview/partner_id/1449362/uiconf_id/14292322/entry_id/1_iy6rwyi1/embed/auto?&flashvars[streamerType]=auto.
- A. B. Zamolodchikov, “Expectation Value of Composite Field TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG In Two-Dimensional Quantum Field Theory,” arXiv:hep-th/0401146.
- F. A. Smirnov and A. B. Zamolodchikov, “On Space of Integrable Quantum Field Theories, arXiv:1608.05499.
- J. Cardy, “The TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of Quantum Field Theory as Random Geometry,” JHEP 10 (2018) 186, arXiv:1801.06895.
- L. McGough, M. Mezei, and H. Verlinde, “Moving CFT Into The Bulk WIth TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2010) 010, arXiv:1611.03470.
- P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS3subscriptAdS3{\mathrm{AdS}}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Versus the TT¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation,” JHEP 07 (2018) 027, arXiv:1801.02714.
- M. Taylor, “TT𝑇𝑇TTitalic_T italic_T Deformations In General Dimensions,” arXiv:1805.10287.
- T. Hartman, J. Kruthoff, E. Shaghoulian, an A. Tajdini, “Holography At Finite Cutoff With A T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Deformation,” JHEP 03 (2019) 004, arXiv:1807.11401.
- V. Shyam, “Finite Cutoff AdS3subscriptAdS3{\mathrm{AdS}}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Holography and the Generalized Gradient Flow,” JHEP 12 (2018) 086, arXiv:1808.07760.
- A. Belin, A. Lewkowycz, and G. Sarosi, “Gravitational Path Integral From The T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Deformation,” JHEP 09 (2020) 156, arXiv:2006.03054.
- G. Araujo-Regalo, R. Khan, and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary,” arXiv:2204.00591.
- G. Mess, “Lorentzian Spacetimes of Constant Curvature,” Geom. Dedicata 126 (2007) 345.
- A. Achucarro and P. K. Townsend, “A Chern-Simons Action For Three-Dimensional anti-De Sitter Supergravity Theories,” Phys. Lett. B180 (1986) 89.
- E. Witten, “2+1212+12 + 1-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B311 (1988) 46.
- K. Kuchar, “Ground State Functional Of The Linearized Gravitational Field,” J. Math. Phys. 11 (1970) 3322-3334.
- C. Chowdhuri, V. Godet, O. Papadoulaki, and S. Raju, “Holography from the Wheeler-de Witt Equation,” arXiv:2107.14802.
- J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example From Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207-26.
- J. B. Hartle and S. W. Hawking, “Wave Function Of The Universe,” Phys. Rev. D28 (1983) 2960.
- J. J. Halliwell and J. B. Hartle, “Wave Functions Constructed From An Invariant Sum Over Histories Satisfy Constraints,” Phys. Rev. 43 (1991) 1170.
- A. O. Barvinsky, “Unitary Approach to Quantum Cosmology,” Phys. Repts. 230 (1993) 237-67.
- J. C. Feng and R. A. Matzner, “From Path Integrals to the Wheeler-DeWitt Equation: Time Evolution in Spacetimes With A Spatial Boundary,” arXiv:1708.07001.
- I. G. Avramiki and G. Esposito, “Lack Of Strong Ellipticity in Euclidean Quantum Gravity,” Class. Quant. Grav. 15 (1998) 1141-52, arXiv:hep-th/9708163.
- M. T. Anderson, “Boundary Value Problems For Einstein Metrics,” Geom. and Top. 12 (2008) 2009-45, arXiv:math/0612647.
- E. Witten, “A Note on Boundary Conditions in Euclidean Gravity,” Rev. Math. Phys. 33 (2021) 2140004, arXiv:1805.11559.
- M. T. Anderson, “Extension of Symmetries on Einstein Manifolds With Boundary,” Selecta Math. 16 (2010) 343-375, arXiv:0704.3373.
- O. Nachtmann, “Dynamische Stabilität im de-Sitter-Raum,” Sitz. Ber. Öst. Ak. d. Wiss. II 176 (1968) 363.
- A. Higuchi, “Quantum Linearization Instabilities Of De Sitter Spacetime: II” Class Quant, Grav. 8 (1991) 1983.
- A. Ashtekhar, J. Lewandowski, D. Marolf, J. Mouräo, and T. Theimann, “Quantization of Diffeomorphism Invariant Theories of Connections With Local Degrees of Freedom,” J. Math. Phys. 16 (1995) 6456, arXiv:gr-qc/9504018.
- D. Marolf, “Path Integrals and Instantons in Quantum Gravity: Minisuperspace Models,” arXiv:gr-qc/9602019.
- F. Embacher, “Hand-Waving Refined Algebraic Quantization,” arXiv:gr-qc/9708016.
- D. Giulini and D. Marolf, “On The Generality Of Refined Algebraic Quantization,” Class. Quant. Gravity 16 (1999) 2479, arXiv:gr-qc/9812024.
- D. Marolf, “Group Averaging and Refined Algebraic Quantization: Where are We Now?” in V. G. Gurzadyan, ed., Proceedings of the Ninth Marcel Grossman Meeting on General Relativity, arXiv:gr-qc/0011112.
- V. Chandrasekharan, R. Longo, G. Penington, and E. Witten, “An Algebra of Observables for de Sitter Space,” arXiv:2206.10780.
- E. S. Fradkin and G. A. Vilkovisky, “Quantization of Relativistic Systems with Consraints: Equivalence of Canonical And Covariant Formalisms in Quantum Theory of Gravitational Field” (preprint, 1977, available at https://cds.cern.ch/record/406087/files/CM-P00061709.pdf).
- P. T. Chruściel and G. J. Galloway, “Maximal Hypersurfaces in Asymptotically Anti-de Sitter Spacetime,” arXiv:2208.09893.
- A. Raychaudhuri, “Relativistic Cosmology,” Phys. Rev. 98 (1955) 1123.
- R. K. Sachs, “Gravitational Waves In General Relativity, 6. The Outgoing Radiation Condition,” Proc. Roy. Soc. Lond. A64 (1961) 309-38.
- J. Couch, S. Eccles, T. Jacobson, and P. Nguyen, “Holographic Complexity and Volume,” JHEP 11 (2018) 044, arXiv:1807.02186.
- L. Romans, “Massive N=2a𝑁2𝑎N=2aitalic_N = 2 italic_a Supergravity in Ten Dimensions,” Phys. Lett. B169 (1986) 374.
- E. Witten, “Light Rays, Singularities, and All That,” Rev. Mod. Phys. 92 (2020) 045004, arXiv:1901.03928.
- A. Wall, “Maximin Surfaces and the Strong Subadditivity of Entropy,” Class. Quant. Grav. 31 (2014) 225007, arXiv:1211.3494.
- B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, “The Gravity Dual of a Density Matrix,” Class. Quant. Grav. 29 (2012) 155009, arXiv:1204.1330.
- L. Andersson, P. T. Chruściel, and H. Friedrich, “On The Regularity Of Solutions to the Yamabe Equation and the Existence of Smooth Hyperboloidal Initial Data For Einstein’s Field Equation,” Commun. Math. Phys. 149 (1992) 587-612.
- A. Sakovich, “Constant Mean Curvature Solutions of the Einstein-Scalar Field Constraint Equations on Asymptotically Hyperbolic Manifolds,” arXiv:0910.4178.
- Y. Choquet-Bruhat, J. Isenberg and D. Pollack, “The Constraint Equation For the Einstein-Scalar Field System on Compact Manifolds,” arXiv:gr-qc/0610045.
- J. Maldacena and C. Nuñez, “Supergravity Description of Field Theories On Curved Manifolds and A No-Go Theorem,” Int. J. Mod. Phys. A16 (2001) 822-55, arXiv:hep-th/0007018.
- M. F. Atiyah and I. M. Singer, “The Index Of Elliptic Operators: V” Ann. Math. 93 (1971) 139-49.
- A. Lichnerowicz, “Spineurs Harmoniques,” C. R. Acad. Sci. Paris 257 (1963) 7-9.
- M. Gromov and H. B. Lawson, Jr., “Spin and Scalar Curvature in the Presence of a Fundamental Group,” Ann. Math. 111 (1980) 209-230.
- S. Stolz, “Simply Connected Manifolds Of Positive Scalar Curvature,” Bull. Am. Math. Soc. 23 (1990) 427-32.
- D. R. Brill, “On Spacetimes Without Maximal Surfaces,” in H. Ning, ed., Proceedings of the Third Marcel Grossman Meeting on General Relativity (North-Holland, 1983), 79-87.
- D. M. Witt, “Vacuum Spacetimes that Admit No Maximal Slice,” Phys. Rev. Lett. 57 (1986) 1386-9.
- D. M. Witt, “Topological Obstructions to Maximal Slices,” arXiv:0908.3205.
- J. Louko and R, Sorkin, “Complex Actions in Two-Dimensional Topology Change,” arXiv:gr-qc/9511023.
- D. Harlow and H. Ooguri, “Symmetries in Quantum Field Theory and Quantum Gravity,” Commun. Math. Phys. 383 (2021) 1669-1804, arXiv:1810.05338.
- J. McNamara and C. Vafa, “Cobordism Classes and The Swampland,” arXiv:1909.10355.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.