Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Note On The Canonical Formalism for Gravity (2212.08270v2)

Published 16 Dec 2022 in hep-th

Abstract: We describe a simple gauge-fixing that leads to a construction of a quantum Hilbert space for quantum gravity in an asymptotically Anti de Sitter spacetime, valid to all orders of perturbation theory. The construction is motivated by a relationship of the phase space of gravity in asymptotically Anti de Sitter spacetime to a cotangent bundle. We describe what is known about this relationship and some extensions that might plausibly be true. A key fact is that, under certain conditions, the Einstein Hamiltonian constraint equation can be viewed as a way to gauge fix the group of conformal rescalings of the metric of a Cauchy hypersurface. An analog of the procedure that we follow for Anti de Sitter gravity leads to standard results for a Klein-Gordon particle.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. B. DeWitt, “Quantum Theory of Gravity, I: The Canonical Theory,” Phys,. Rev. 160 (1967) 1113-1148.
  2. J. W. York, “Role Of Conformal Three-Geometry in the Dynamics of Gravitation,” Phys. Rev. Lett. 28 (1972) 1082-5.
  3. Y. Choquet-Bruhat, “The Problem of Constraints in General Relativity, Solution of the Lichnerowicz Equation,” in M. Cahen and M. Flato, eds. Differential Geometry and Relativity (D. Reidel, 1976).
  4. N. O’Murchadha and J. W. York, “Existence and Uniqueness of Solutions of the Hamiltonian Constraint of General Relativity on Compact Manifolds,” J. Math. Phys,. 14 (1973) 1551-1557.
  5. Y. Choquet-Bruhat and J. Isenberg, “The Cauchy Problem,” in A. Held, ed., General Relativity and Gravitation (Plenum Pres, 1980).
  6. J. Isenberg, “Constant Mean Curvature Solutions Of The Einstein Constraint Equations On Closed Manifolds,” Class. Quant. Grav. 12 (1995) 2249-74.
  7. P. Chruściel, “Cauchy Problems for the Einstein Equations: an Introduction,” available at https://homepage.univie.ac.at/piotr.chrusciel/teaching/Cauchy/Roscoff.pdf.
  8. R. Bartnik and J. Isenberg, “The Constraint Equations,” arXiv:gr-qc/0405092.
  9. V. Moncrief, “Reduction of the Einstein Equations in (2+1)-Dimensions to a Hamiltonian System over Teichmüller Space,” J. Math. Phys. 30 (1989) 2907-14.
  10. K. Krasnov and J.-M. Schlenker, “Minimal Surfaces And Particles in 3-Manifolds,” Geom. Dedicata 126 (2007) 187-254, arXiv:math/0511441.
  11. F. Bonsante and J.-M. Schlenker, “Maximal Surfaces and the Universal Teichmüller Space,” Invent. Math. 182 (2010) 279-333, arXiv:0911.4124.
  12. C. Scarinci and K. Krasnov, “The Universal Phase Space of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT Gravity,” Commun,. Math. Phys. 322 (2013) 167-205, arXiv:1111.6507.
  13. E. Witten, “Canonical Quantization in Anti de Sitter Space” (lecture at Princeton Center for Theoretical Science, October 31, 2017), available at http://www.kaltura.com/index.php/extwidget/preview/partner_id/1449362/uiconf_id/14292322/entry_id/1_iy6rwyi1/embed/auto?&flashvars[streamerType]=auto.
  14. A. B. Zamolodchikov, “Expectation Value of Composite Field T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG In Two-Dimensional Quantum Field Theory,” arXiv:hep-th/0401146.
  15. F. A. Smirnov and A. B. Zamolodchikov, “On Space of Integrable Quantum Field Theories, arXiv:1608.05499.
  16. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of Quantum Field Theory as Random Geometry,” JHEP 10 (2018) 186, arXiv:1801.06895.
  17. L. McGough, M. Mezei, and H. Verlinde, “Moving CFT Into The Bulk WIth T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2010) 010, arXiv:1611.03470.
  18. P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS3subscriptAdS3{\mathrm{AdS}}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation,” JHEP 07 (2018) 027, arXiv:1801.02714.
  19. M. Taylor, “T⁢T𝑇𝑇TTitalic_T italic_T Deformations In General Dimensions,” arXiv:1805.10287.
  20. T. Hartman, J. Kruthoff, E. Shaghoulian, an A. Tajdini, “Holography At Finite Cutoff With A T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Deformation,” JHEP 03 (2019) 004, arXiv:1807.11401.
  21. V. Shyam, “Finite Cutoff AdS3subscriptAdS3{\mathrm{AdS}}_{3}roman_AdS start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Holography and the Generalized Gradient Flow,” JHEP 12 (2018) 086, arXiv:1808.07760.
  22. A. Belin, A. Lewkowycz, and G. Sarosi, “Gravitational Path Integral From The T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Deformation,” JHEP 09 (2020) 156, arXiv:2006.03054.
  23. G. Araujo-Regalo, R. Khan, and A. C. Wall, “Cauchy Slice Holography: A New AdS/CFT Dictionary,” arXiv:2204.00591.
  24. G. Mess, “Lorentzian Spacetimes of Constant Curvature,” Geom. Dedicata 126 (2007) 345.
  25. A. Achucarro and P. K. Townsend, “A Chern-Simons Action For Three-Dimensional anti-De Sitter Supergravity Theories,” Phys. Lett. B180 (1986) 89.
  26. E. Witten, “2+1212+12 + 1-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B311 (1988) 46.
  27. K. Kuchar, “Ground State Functional Of The Linearized Gravitational Field,” J. Math. Phys. 11 (1970) 3322-3334.
  28. C. Chowdhuri, V. Godet, O. Papadoulaki, and S. Raju, “Holography from the Wheeler-de Witt Equation,” arXiv:2107.14802.
  29. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example From Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207-26.
  30. J. B. Hartle and S. W. Hawking, “Wave Function Of The Universe,” Phys. Rev. D28 (1983) 2960.
  31. J. J. Halliwell and J. B. Hartle, “Wave Functions Constructed From An Invariant Sum Over Histories Satisfy Constraints,” Phys. Rev. 43 (1991) 1170.
  32. A. O. Barvinsky, “Unitary Approach to Quantum Cosmology,” Phys. Repts. 230 (1993) 237-67.
  33. J. C. Feng and R. A. Matzner, “From Path Integrals to the Wheeler-DeWitt Equation: Time Evolution in Spacetimes With A Spatial Boundary,” arXiv:1708.07001.
  34. I. G. Avramiki and G. Esposito, “Lack Of Strong Ellipticity in Euclidean Quantum Gravity,” Class. Quant. Grav. 15 (1998) 1141-52, arXiv:hep-th/9708163.
  35. M. T. Anderson, “Boundary Value Problems For Einstein Metrics,” Geom. and Top. 12 (2008) 2009-45, arXiv:math/0612647.
  36. E. Witten, “A Note on Boundary Conditions in Euclidean Gravity,” Rev. Math. Phys. 33 (2021) 2140004, arXiv:1805.11559.
  37. M. T. Anderson, “Extension of Symmetries on Einstein Manifolds With Boundary,” Selecta Math. 16 (2010) 343-375, arXiv:0704.3373.
  38. O. Nachtmann, “Dynamische Stabilität im de-Sitter-Raum,” Sitz. Ber. Öst. Ak. d. Wiss. II 176 (1968) 363.
  39. A. Higuchi, “Quantum Linearization Instabilities Of De Sitter Spacetime: II” Class Quant, Grav. 8 (1991) 1983.
  40. A. Ashtekhar, J. Lewandowski, D. Marolf, J. Mouräo, and T. Theimann, “Quantization of Diffeomorphism Invariant Theories of Connections With Local Degrees of Freedom,” J. Math. Phys. 16 (1995) 6456, arXiv:gr-qc/9504018.
  41. D. Marolf, “Path Integrals and Instantons in Quantum Gravity: Minisuperspace Models,” arXiv:gr-qc/9602019.
  42. F. Embacher, “Hand-Waving Refined Algebraic Quantization,” arXiv:gr-qc/9708016.
  43. D. Giulini and D. Marolf, “On The Generality Of Refined Algebraic Quantization,” Class. Quant. Gravity 16 (1999) 2479, arXiv:gr-qc/9812024.
  44. D. Marolf, “Group Averaging and Refined Algebraic Quantization: Where are We Now?” in V. G. Gurzadyan, ed., Proceedings of the Ninth Marcel Grossman Meeting on General Relativity, arXiv:gr-qc/0011112.
  45. V. Chandrasekharan, R. Longo, G. Penington, and E. Witten, “An Algebra of Observables for de Sitter Space,” arXiv:2206.10780.
  46. E. S. Fradkin and G. A. Vilkovisky, “Quantization of Relativistic Systems with Consraints: Equivalence of Canonical And Covariant Formalisms in Quantum Theory of Gravitational Field” (preprint, 1977, available at https://cds.cern.ch/record/406087/files/CM-P00061709.pdf).
  47. P. T. Chruściel and G. J. Galloway, “Maximal Hypersurfaces in Asymptotically Anti-de Sitter Spacetime,” arXiv:2208.09893.
  48. A. Raychaudhuri, “Relativistic Cosmology,” Phys. Rev. 98 (1955) 1123.
  49. R. K. Sachs, “Gravitational Waves In General Relativity, 6. The Outgoing Radiation Condition,” Proc. Roy. Soc. Lond. A64 (1961) 309-38.
  50. J. Couch, S. Eccles, T. Jacobson, and P. Nguyen, “Holographic Complexity and Volume,” JHEP 11 (2018) 044, arXiv:1807.02186.
  51. L. Romans, “Massive N=2⁢a𝑁2𝑎N=2aitalic_N = 2 italic_a Supergravity in Ten Dimensions,” Phys. Lett. B169 (1986) 374.
  52. E. Witten, “Light Rays, Singularities, and All That,” Rev. Mod. Phys. 92 (2020) 045004, arXiv:1901.03928.
  53. A. Wall, “Maximin Surfaces and the Strong Subadditivity of Entropy,” Class. Quant. Grav. 31 (2014) 225007, arXiv:1211.3494.
  54. B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, “The Gravity Dual of a Density Matrix,” Class. Quant. Grav. 29 (2012) 155009, arXiv:1204.1330.
  55. L. Andersson, P. T. Chruściel, and H. Friedrich, “On The Regularity Of Solutions to the Yamabe Equation and the Existence of Smooth Hyperboloidal Initial Data For Einstein’s Field Equation,” Commun. Math. Phys. 149 (1992) 587-612.
  56. A. Sakovich, “Constant Mean Curvature Solutions of the Einstein-Scalar Field Constraint Equations on Asymptotically Hyperbolic Manifolds,” arXiv:0910.4178.
  57. Y. Choquet-Bruhat, J. Isenberg and D. Pollack, “The Constraint Equation For the Einstein-Scalar Field System on Compact Manifolds,” arXiv:gr-qc/0610045.
  58. J. Maldacena and C. Nuñez, “Supergravity Description of Field Theories On Curved Manifolds and A No-Go Theorem,” Int. J. Mod. Phys. A16 (2001) 822-55, arXiv:hep-th/0007018.
  59. M. F. Atiyah and I. M. Singer, “The Index Of Elliptic Operators: V” Ann. Math. 93 (1971) 139-49.
  60. A. Lichnerowicz, “Spineurs Harmoniques,” C. R. Acad. Sci. Paris 257 (1963) 7-9.
  61. M. Gromov and H. B. Lawson, Jr., “Spin and Scalar Curvature in the Presence of a Fundamental Group,” Ann. Math. 111 (1980) 209-230.
  62. S. Stolz, “Simply Connected Manifolds Of Positive Scalar Curvature,” Bull. Am. Math. Soc. 23 (1990) 427-32.
  63. D. R. Brill, “On Spacetimes Without Maximal Surfaces,” in H. Ning, ed., Proceedings of the Third Marcel Grossman Meeting on General Relativity (North-Holland, 1983), 79-87.
  64. D. M. Witt, “Vacuum Spacetimes that Admit No Maximal Slice,” Phys. Rev. Lett. 57 (1986) 1386-9.
  65. D. M. Witt, “Topological Obstructions to Maximal Slices,” arXiv:0908.3205.
  66. J. Louko and R, Sorkin, “Complex Actions in Two-Dimensional Topology Change,” arXiv:gr-qc/9511023.
  67. D. Harlow and H. Ooguri, “Symmetries in Quantum Field Theory and Quantum Gravity,” Commun. Math. Phys. 383 (2021) 1669-1804, arXiv:1810.05338.
  68. J. McNamara and C. Vafa, “Cobordism Classes and The Swampland,” arXiv:1909.10355.
Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 tweets and received 43 likes.

Upgrade to Pro to view all of the tweets about this paper: