Location-aware Adaptive Normalization: A Deep Learning Approach For Wildfire Danger Forecasting (2212.08208v2)
Abstract: Climate change is expected to intensify and increase extreme events in the weather cycle. Since this has a significant impact on various sectors of our life, recent works are concerned with identifying and predicting such extreme events from Earth observations. With respect to wildfire danger forecasting, previous deep learning approaches duplicate static variables along the time dimension and neglect the intrinsic differences between static and dynamic variables. Furthermore, most existing multi-branch architectures lose the interconnections between the branches during the feature learning stage. To address these issues, this paper proposes a 2D/3D two-branch convolutional neural network (CNN) with a Location-aware Adaptive Normalization layer (LOAN). Using LOAN as a building block, we can modulate the dynamic features conditional on their geographical locations. Thus, our approach considers feature properties as a unified yet compound 2D/3D model. Besides, we propose using the sinusoidal-based encoding of the day of the year to provide the model with explicit temporal information about the target day within the year. Our experimental results show a better performance of our approach than other baselines on the challenging FireCube dataset. The results show that location-aware adaptive feature normalization is a promising technique to learn the relation between dynamic variables and their geographic locations, which is highly relevant for areas where remote sensing data builds the basis for analysis. The source code is available at https://github.com/HakamShams/LOAN.
- L. Ren, P. Arkin, T. M. Smith, and S. S. Shen, “Global precipitation trends in 1900–2005 from a reconstruction and coupled model simulations,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 4, pp. 1679–1689, 2013. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50212
- A. M. Lausier and S. Jain, “Overlooked trends in observed global annual precipitation reveal underestimated risks,” Scientific reports, vol. 8, no. 1, pp. 1–7, 2018.
- S. Perkins-Kirkpatrick and S. Lewis, “Increasing trends in regional heatwaves,” Nature communications, vol. 11, no. 1, pp. 1–8, 2020.
- R. Samuels, A. Hochman, A. Baharad, A. Givati, Y. Levi, Y. Yosef, H. Saaroni, B. Ziv, T. Harpaz, and P. Alpert, “Evaluation and projection of extreme precipitation indices in the eastern mediterranean based on cmip5 multi-model ensemble,” International Journal of Climatology, vol. 38, no. 5, pp. 2280–2297, 2018.
- G. Zittis, P. Hadjinicolaou, M. Klangidou, Y. Proestos, and J. Lelieveld, “A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the mediterranean,” Regional Environmental Change, vol. 19, no. 8, pp. 2621–2635, 2019.
- M. J. Barcikowska, S. B. Kapnick, L. Krishnamurty, S. Russo, A. Cherchi, and C. K. Folland, “Changes in the future summer mediterranean climate: contribution of teleconnections and local factors,” Earth System Dynamics, vol. 11, no. 1, pp. 161–181, 2020. [Online]. Available: https://esd.copernicus.org/articles/11/161/2020/
- A. Hochman, F. Marra, G. Messori, J. G. Pinto, S. Raveh-Rubin, Y. Yosef, and G. Zittis, “Extreme weather and societal impacts in the eastern mediterranean,” Earth System Dynamics, vol. 13, no. 2, pp. 749–777, 2022. [Online]. Available: https://esd.copernicus.org/articles/13/749/2022/
- M. P. Thompson, Y. Wei, D. E. Calkin, C. D. O’Connor, C. J. Dunn, N. M. Anderson, and J. S. Hogland, “Risk management and analytics in wildfire response,” Current Forestry Reports, vol. 5, no. 4, pp. 226–239, 2019.
- S. C. P. Coogan, F. Robinne, P. Jain, and M. D. Flannigan, “Scientists’ warning on wildfire — a canadian perspective,” Canadian Journal of Forest Research, 2019.
- F. Moreira, D. Ascoli, H. Safford, M. A. Adams, J. M. Moreno, J. M. C. Pereira, F. X. Catry, J. Armesto, W. Bond, M. E. González, T. Curt, N. Koutsias, L. McCaw, O. Price, J. G. Pausas, E. Rigolot, S. Stephens, C. Tavsanoglu, V. R. Vallejo, B. W. V. Wilgen, G. Xanthopoulos, and P. M. Fernandes, “Wildfire management in mediterranean-type regions: paradigm change needed,” Environmental Research Letters, vol. 15, no. 1, p. 011001, jan 2020. [Online]. Available: https://dx.doi.org/10.1088/1748-9326/ab541e
- P. Jain, S. C. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and M. D. Flannigan, “A review of machine learning applications in wildfire science and management,” Environmental Reviews, vol. 28, no. 4, pp. 478–505, 2020.
- D. Fornacca, G. Ren, and W. Xiao, “Performance of three modis fire products (mcd45a1, mcd64a1, mcd14ml), and esa fire_cci in a mountainous area of northwest yunnan, china, characterized by frequent small fires,” Remote Sensing, vol. 9, no. 11, p. 1131, 2017.
- S. Kondylatos, I. Prapas, M. Ronco, I. Papoutsis, G. Camps-Valls, M. Piles, M.-Á. Fernández-Torres, and N. Carvalhais, “Wildfire danger prediction and understanding with deep learning,” Geophysical Research Letters, vol. 49, no. 17, p. e2022GL099368, 2022. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL099368
- S. Hantson, A. Arneth, S. P. Harrison, D. I. Kelley, I. C. Prentice, S. S. Rabin, S. Archibald, F. Mouillot, S. R. Arnold, P. Artaxo et al., “The status and challenge of global fire modelling,” Biogeosciences, vol. 13, no. 11, pp. 3359–3375, 2016.
- M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais et al., “Deep learning and process understanding for data-driven earth system science,” Nature, vol. 566, no. 7743, pp. 195–204, 2019.
- I. Prapas, S. Kondylatos, I. Papoutsis, G. Camps-Valls, M. Ronco, M.-Á. Fernández-Torres, M. P. Guillem, and N. Carvalhais, “Deep learning methods for daily wildfire danger forecasting,” 2021. [Online]. Available: https://arxiv.org/abs/2111.02736
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- I. Prapas, S. Kondylatos, and I. Papoutsis, “FireCube: A Daily Datacube for the Modeling and Analysis of Wildfires in Greece,” May 2022. [Online]. Available: https://doi.org/10.5281/zenodo.6475592
- M. C. Iban and A. Sekertekin, “Machine learning based wildfire susceptibility mapping using remotely sensed fire data and gis: A case study of adana and mersin provinces, turkey,” Ecological Informatics, vol. 69, p. 101647, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574954122000966
- B. T. Pham, A. Jaafari, M. Avand, N. Al-Ansari, T. Dinh Du, H. P. H. Yen, T. V. Phong, D. H. Nguyen, H. V. Le, D. Mafi-Gholami, I. Prakash, H. Thi Thuy, and T. T. Tuyen, “Performance evaluation of machine learning methods for forest fire modeling and prediction,” Symmetry, vol. 12, no. 6, 2020. [Online]. Available: https://www.mdpi.com/2073-8994/12/6/1022
- S. Gholami, N. Kodandapani, J. Wang, and J. M. L. Ferres, “Where there’s smoke, there’s fire: Wildfire risk predictive modeling via historical climate data,” in AAAI Conference on Artificial Intelligence, 2020.
- C. Shang, M. A. Wulder, N. C. Coops, J. C. White, and T. Hermosilla, “Spatially-explicit prediction of wildfire burn probability using remotely-sensed and ancillary data,” Canadian Journal of Remote Sensing, vol. 46, pp. 313 – 329, 2020.
- I. Mitsopoulos and G. Mallinis, “A data-driven approach to assess large fire size generation in greece,” Natural Hazards, vol. 88, pp. 1591–1607, 2017.
- T. Jiang, S. K. Bendre, H. Lyu, and J. Luo, “From static to dynamic prediction: Wildfire risk assessment based on multiple environmental factors,” in 2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 4877–4886.
- H. V. Le, D. A. Hoang, C. T. Tran, P. Q. Nguyen, V. H. T. Tran, N. D. Hoang, M. Amiri, T. P. T. Ngo, H. V. Nhu, T. V. Hoang, and D. Tien Bui, “A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas,” Ecological Informatics, vol. 63, p. 101300, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574954121000911
- G. Zhang, M. Wang, and K. Liu, “Forest fire susceptibility modeling using a convolutional neural network for yunnan province of china,” International Journal of Disaster Risk Science, vol. 10, no. 3, pp. 386–403, 2019.
- ——, “Deep neural networks for global wildfire susceptibility modelling,” Ecological Indicators, vol. 127, p. 107735, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1470160X21004003
- A. Bjånes, R. De La Fuente, and P. Mena, “A deep learning ensemble model for wildfire susceptibility mapping,” Ecological Informatics, vol. 65, p. 101397, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574954121001886
- J. R. Bergado, C. Persello, K. Reinke, and A. Stein, “Predicting wildfire burns from big geodata using deep learning,” Safety science, vol. 140, p. 105276, 2021.
- F. Huot, R. L. Hu, N. Goyal, T. Sankar, M. Ihme, and Y.-F. Chen, “Next day wildfire spread: A machine learning dataset to predict wildfire spreading from remote-sensing data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
- I. Prapas, A. Ahuja, S. Kondylatos, I. Karasante, L. Alonso, E. Panagiotou, C. Davalas, D. Michail, N. Carvalhais, and I. Papoutsis, “Deep learning for global wildfire forecasting,” in NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning, 2022. [Online]. Available: https://www.climatechange.ai/papers/neurips2022/52
- H.-J. Yoon and P. G. Voulgaris, “Multi-time predictions of wildfire grid map using remote sensing local data,” 2022 IEEE International Conference on Knowledge Graph (ICKG), pp. 365–372, 2022.
- Q. Zhao, Y. Ma, S. Lyu, and L. Chen, “Embedded self-distillation in compact multibranch ensemble network for remote sensing scene classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
- R. Gaetano, D. Ienco, K. Ose, and R. Cresson, “A two-branch cnn architecture for land cover classification of pan and ms imagery,” Remote Sensing, vol. 10, no. 11, 2018. [Online]. Available: https://www.mdpi.com/2072-4292/10/11/1746
- Y. Tan, S. Xiong, and P. Yan, “Multi-branch convolutional neural network for built-up area extraction from remote sensing image,” Neurocomputing, vol. 396, pp. 358–374, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231219309208
- Y. Xu, L. Zhang, B. Du, and F. Zhang, “Spectral–spatial unified networks for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 10, pp. 5893–5909, 2018.
- Y. Shen, L. Xiao, J. Chen, and D. Pan, “A spectral-spatial domain-specific convolutional deep extreme learning machine for supervised hyperspectral image classification,” IEEE Access, vol. 7, pp. 132 240–132 252, 2019.
- X. Liu, C. Deng, J. Chanussot, D. Hong, and B. Zhao, “Stfnet: A two-stream convolutional neural network for spatiotemporal image fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6552–6564, 2019.
- C. Gan, X. Yan, Y. Wu, and Z. Zhang, “A two-branch convolution residual network for image compressive sensing,” IEEE Access, vol. 8, pp. 1705–1714, 2020.
- Y. Tang, X. Xie, and Y. Yu, “Hyperspectral classification of two-branch joint networks based on gaussian pyramid multiscale and wavelet transform,” IEEE Access, vol. 10, pp. 56 876–56 887, 2022.
- Z. Zhong, J. Li, L. Ma, H. Jiang, and H. Zhao, “Deep residual networks for hyperspectral image classification,” in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017, pp. 1824–1827.
- S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, pp. 1735–80, 12 1997.
- Y. Zheng, S. Liu, Q. Du, H. Zhao, X. Tong, and M. Dalponte, “A novel multitemporal deep fusion network (mdfn) for short-term multitemporal hr images classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10 691–10 704, 2021.
- R. Li, S. Zheng, C. Duan, Y. Yang, and X. Wang, “Classification of hyperspectral image based on double-branch dual-attention mechanism network,” Remote Sensing, vol. 12, no. 3, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/3/582
- Z. Zhu, Y. Tao, and X. Luo, “Hcnnet: A hybrid convolutional neural network for spatiotemporal image fusion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
- Z. Deng, Y. Wang, B. Zhang, L. Li, J. Wang, L. Bian, and C. Yang, “A triple-path spectral–spatial network with interleave-attention for hyperspectral image classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 5906–5923, 2022.
- S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in International conference on machine learning. PMLR, 2015, pp. 448–456.
- Y. Wu and K. He, “Group normalization,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
- D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” ArXiv, vol. abs/1607.08022, 2016.
- J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” ArXiv, vol. abs/1607.06450, 2016.
- T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, “Semantic image synthesis with spatially-adaptive normalization,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2332–2341.
- X. Wang, K. Yu, C. Dong, and C. Change Loy, “Recovering realistic texture in image super-resolution by deep spatial feature transform,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 606–615.
- X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 1501–1510.
- J. Ling, H. Xue, L. Song, R. Xie, and X. Gu, “Region-aware adaptive instance normalization for image harmonization,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 9357–9366.
- N. van Noord and E. Postma, “A learned representation of artist-specific colourisation,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops, Oct 2017.
- P. Zhu, R. Abdal, Y. Qin, and P. Wonka, “Sean: Image synthesis with semantic region-adaptive normalization,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 5103–5112.
- Z. Tan, D. Chen, Q. Chu, M. Chai, J. Liao, M. He, L. Yuan, G. Hua, and N. Yu, “Efficient semantic image synthesis via class-adaptive normalization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 4852–4866, 2022.
- Z. Lv, X. Li, X. Li, F. Li, T. Lin, D. He, and W. Zuo, “Learning semantic person image generation by region-adaptive normalization,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 10 801–10 810.
- Y. Lyu, P. Chen, J. Sun, X. Wang, J. Dong, and T. Tan, “Detailed region-adaptive normalization for heavy makeup transfer,” arXiv preprint arXiv:2109.14525, 2021.
- K. Jakoel, L. Efraim, and T. R. Shaham, “Gans spatial control via inference-time adaptive normalization,” in 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, pp. 31–40.
- T. Chen, M. Lucic, N. Houlsby, and S. Gelly, “On self modulation for generative adversarial networks,” 2019. [Online]. Available: https://openreview.net/forum?id=Hkl5aoR5tm
- X. Huang and S. J. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1510–1519, 2017.
- V. Sushko, E. Schönfeld, D. Zhang, J. Gall, B. Schiele, and A. Khoreva, “Oasis: Only adversarial supervision for semantic image synthesis,” International Journal of Computer Vision, 2022.
- S. Li, M.-M. Cheng, and J. Gall, “Dual pyramid generative adversarial networks for semantic image synthesis,” in British Machine Vision Conference, 2022.
- J. Marín and S. Escalera, “Sssgan: Satellite style and structure generative adversarial networks,” Remote Sensing, vol. 13, no. 19, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/19/3984
- X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional lstm network: A machine learning approach for precipitation nowcasting,” Advances in neural information processing systems, vol. 28, 2015.
- M. Rußwurm and M. Körner, “Multi-temporal land cover classification with sequential recurrent encoders,” ISPRS International Journal of Geo-Information, vol. 7, no. 4, 2018. [Online]. Available: https://www.mdpi.com/2220-9964/7/4/129
- C. Pelletier, G. I. Webb, and F. Petitjean, “Temporal convolutional neural network for the classification of satellite image time series,” Remote Sensing, vol. 11, no. 5, p. 523, 2019, https://www.mdpi.com/2072-4292/11/5/523.
- W. R. Moskolaï, W. Abdou, A. Dipanda, and Kolyang, “Application of deep learning architectures for satellite image time series prediction: A review,” Remote Sensing, vol. 13, no. 23, 2021. [Online]. Available: https://www.mdpi.com/2072-4292/13/23/4822
- V. S. F. Garnot, L. Landrieu, S. Giordano, and N. Chehata, “Satellite image time series classification with pixel-set encoders and temporal self-attention,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 325–12 334.
- V. S. F. Garnot and L. Landrieu, “Lightweight temporal self-attention for classifying satellite images time series,” in Advanced Analytics and Learning on Temporal Data, V. Lemaire, S. Malinowski, A. Bagnall, T. Guyet, R. Tavenard, and G. Ifrim, Eds. Cham: Springer International Publishing, 2020, pp. 171–181.
- V. S. Fare Garnot and L. Landrieu, “Panoptic segmentation of satellite image time series with convolutional temporal attention networks,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 4852–4861.
- L. Drees, I. Weber, M. Rußwurm, and R. Roscher, “Time dependent image generation of plants from incomplete sequences with cnn-transformer,” in DAGM German Conference on Pattern Recognition. Springer, 2022, pp. 495–510.
- J. Nyborg, C. Pelletier, S. Lefèvre, and I. Assent, “Timematch: Unsupervised cross-region adaptation by temporal shift estimation,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 301–313, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924271622001216
- J. Nyborg, C. Pelletier, and I. Assent, “Generalized classification of satellite image time series with thermal positional encoding,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022, pp. 1391–1401.
- J. Muñoz Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Harrigan, H. Hersbach, B. Martens, D. G. Miralles, M. Piles, N. J. Rodríguez-Fernández, E. Zsoter, C. Buontempo, and J.-N. Thépaut, “Era5-land: a state-of-the-art global reanalysis dataset for land applications,” Earth System Science Data, vol. 13, no. 9, pp. 4349–4383, 2021. [Online]. Available: https://essd.copernicus.org/articles/13/4349/2021/
- K. Didan, “Mod13a2 modis/terra vegetation indices 16-day l3 global 1km sin grid v006 [data set]. nasa eosdis land processes daac,” 2015. [Online]. Available: https://doi.org/10.5067/MODIS/MOD13A2.006
- Z. Wan, S. Hook, and G. Hulley, “Mod11a2 modis/terra land surface temperature/emissivity 8-day l3 global 1km sin grid v006,” 2015. [Online]. Available: https://doi.org/10.5067/MODIS/MOD13A2.006
- A. Bashfield and A. Keim, “Continent-wide dem creation for the european union,” in 34th International Symposium on Remote Sensing of Environment. The GEOSS Era: Towards Operational Environmental Monitoring. Sydney, Australia, 2011, pp. 10–15.
- A. J. Tatem, “Worldpop, open data for spatial demography,” Scientific data, vol. 4, no. 1, pp. 1–4, 2017.
- J. San-Miguel-Ayanz, E. Schulte, G. Schmuck, and A. Camia, “The european forest fire information system in the context of environmental policies of the european union,” Forest Policy and Economics, vol. 29, pp. 19–25, 2013, the FIRE PARADOX project: Setting the basis for a shift in the forest fire policies in Europe. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S138993411200127X
- L. Giglio, W. Schroeder, and C. O. Justice, “The collection 6 modis active fire detection algorithm and fire products,” Remote Sensing of Environment, vol. 178, pp. 31–41, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425716300827
- T. M. Giannaros, G. Papavasileiou, K. Lagouvardos, V. Kotroni, S. Dafis, A. Karagiannidis, and E. Dragozi, “Meteorological analysis of the 2021 extreme wildfires in greece: Lessons learned and implications for early warning of the potential for pyroconvection,” Atmosphere, vol. 13, no. 3, 2022. [Online]. Available: https://www.mdpi.com/2073-4433/13/3/475
- I. Prapas, S. Kondylatos, and I. Papoutsis, “Training data for submitted paper ”Wildfire Danger Prediction and Understanding with Deep Learning”,” May 2022. [Online]. Available: https://doi.org/10.5281/zenodo.6528394
- C. Cammalleri, J. V. Vogt, B. Bisselink, and A. de Roo, “Comparing soil moisture anomalies from multiple independent sources over different regions across the globe,” Hydrology and Earth System Sciences, vol. 21, no. 12, pp. 6329–6343, 2017.
- M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint arXiv:1312.4400, 2013.
- Y. Martín, M. Zúñiga-Antón, and M. R. Mimbrero, “Modelling temporal variation of fire-occurrence towards the dynamic prediction of human wildfire ignition danger in northeast spain,” Geomatics, Natural Hazards and Risk, vol. 10, no. 1, pp. 385–411, 2019. [Online]. Available: https://doi.org/10.1080/19475705.2018.1526219
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2015.
- G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all you need for video understanding?” in Proceedings of the International Conference on Machine Learning (ICML), July 2021.
- Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video swin transformer,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 3202–3211.
- L. Breiman, “Random forests,” Machine Learning 2001 45:1, vol. 45, pp. 5–32, 10 2001. [Online]. Available: https://link.springer.com/article/10.1023/A:1010933404324
- T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.