Papers
Topics
Authors
Recent
2000 character limit reached

Time-limited Balanced Truncation for Data Assimilation Problems

Published 15 Dec 2022 in math.NA, cs.NA, cs.SY, and eess.SY | (2212.07719v2)

Abstract: Balanced truncation is a well-established model order reduction method which has been applied to a variety of problems. Recently, a connection between linear Gaussian Bayesian inference problems and the system-theoretic concept of balanced truncation has been drawn. Although this connection is new, the application of balanced truncation to data assimilation is not a novel idea: it has already been used in four-dimensional variational data assimilation (4D-Var). This paper discusses the application of balanced truncation to linear Gaussian Bayesian inference, and, in particular, the 4D-Var method, thereby strengthening the link between systems theory and data assimilation further. Similarities between both types of data assimilation problems enable a generalisation of the state-of-the-art approach to the use of arbitrary prior covariances as reachability Gramians. Furthermore, we propose an enhanced approach using time-limited balanced truncation that allows to balance Bayesian inference for unstable systems and in addition improves the numerical results for short observation periods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.