Papers
Topics
Authors
Recent
2000 character limit reached

Mitigating Negative Style Transfer in Hybrid Dialogue System

Published 14 Dec 2022 in cs.CL | (2212.07183v1)

Abstract: As the functionality of dialogue systems evolves, hybrid dialogue systems that accomplish user-specific goals and participate in open-topic chitchat with users are attracting growing attention. Existing research learns both tasks concurrently utilizing a multi-task fusion technique but ignores the negative transfer phenomenon induced by the unique textual style differences. Therefore, contrastive learning based on the latent variable model is used to decouple the various textual genres in the latent space. We devise supervised and self-supervised positive and negative sample constructions for diverse datasets. In addition, to capitalize on the style information contained in the decoupled latent variables, we employ a style prefix that incorporates latent variables further to control the generation of responses with varying styles. We performed extensive experiments on three dialogue datasets, including a hybrid dialogue dataset and two task-oriented dialogue datasets. The experimental results demonstrate that our method can mitigate the negative style transfer issue and achieves state-of-the-art performance on multiple dialogue datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.