Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields (2212.07097v8)

Published 14 Dec 2022 in hep-th, math-ph, math.DS, and math.MP

Abstract: We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on $d$-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and two massless; with two massive both with coinciding and with different masses and one massless fields of spins $s_1, s_2, s_3$. Unlike the previous results on cubic vertices we extend our earlier result in [arXiv:2105.12030[hep-th]] for massless fields and employ the complete BRST operator, including the trace constraints that is used to formulate an irreducible representation with definite integer spin. We generalize the cubic vertices proposed for reducible higher spin fields in [arXiv:1205.3131 [hep-th]] in the form of multiplicative and non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields. We prove that without traceless conditions for the cubic vertices in [arXiv:1205.3131 [hep-th]] it is impossible to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these vertices. As the examples, we explicitly construct the interacting Lagrangian for the massive of spin $s$ field and massless scalars both with and without auxiliary fields. The interacting models with different combinations of triples higher spin fields: massive of spin $s$ with massless scalar and vector fields and with two vector fields; massless of helicity $\lambda$ with massless scalar and massive vector fields; two massive fields of spins $s, 0$ and massless scalar are also considered.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube